|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
 |
Предметный указатель |
Singular point (of an analytic set) 23.B 418.A
Singular point apparent (of a system of linear ordinary differential equations) 254.C
Singular point hyperbolic 126.G
Singular point irregular (of a solution) 254.B
Singular point irregular (of a system of linear ordinary differential equations) 254.B
Singular point isolated 198.D
Singular point left (of a diffusion process) 115.B
Singular point regular (of a solution) 254.B
Singular point regular (of a system of linear ordinary differential equations) 254.B
Singular point right (of a diffusion process) 115.B
Singular projective transformation 343.D
Singular projective transformation of the hth species 343.D
Singular projective transformation q-cochain 201.H
Singular projective transformation q-simplex 201.E
Singular quadric hypersurface of the hth species (in a projective space) 343.E
Singular r-chain of class 105.T
Singular r-cochain of class 105.T
Singular r-simplex of class , oriented 105.T
Singular relative, homology group 201.L
Singular series 4.D
Singular solution (of a differential ideal) 428.E
Singular solution (of a general partial differential equation) 320.C
Singular solution (of a partial differential equation) 320.C
Singular solution (of an ordinary differential equation) 313.A App. Table
Singular solution totally (with respect to a quadratic form) 348.E
Singular spectrum 345.A 390.E
Singular spectrum (of a hyperfunction) 125.CC 274.E
Singular subspace 343.D
Singular subspace, totally 348.E
Singular support (of a distribution) 112.C
Singular support (of a hyper function) 125.W
Singular value 302.A
Singular value decomposition (SVD) 302.E
Singularity (singularities) 51.C 198.M
Singularity algebraic 198.M
Singularity cusp 418.C
Singularity direct transcendental (of an analytic function in the wider sense) 198.P
Singularity elliptic 418.C
Singularity essential (of a complex function) 198.D
Singularity fixed (of an algebraic differential equation) 288.A
Singularity indirect transcendental (of an analytic function in the wider sense) 198.P
Singularity isolated (of a complex function) 198.M
Singularity isolated (of an analytic function) 198.D
Singularity logarithmic (of an analytic function in the wider sense) 198.P
Singularity logarithmic (of an analytic function) 198.M
Singularity movable (of an algebraic differential equation) 288.A
Singularity of an analytic function 198.M
Singularity ordinary (of an analytic function in the wider sense) 198.P
Singularity principle of condensation of 37.H
Singularity quotient 418.C
Singularity rational 418.C
Singularity regular (of a coherent -module) 274.H
Singularity removable (of a complex function) 198.D
Singularity removable (of a harmonic function) 193.L
Singularity set (of a proper meromorphic mapping) 23.D
Singularity spectrum (of a hyperfunction) 125.CC 274.E
Singularity theorem (in physics) 359.F
Singularity transcendental (of an analytic function in the wider sense) 198.P
Singularity two-dimensional 418.C
Singularity, propagation of 325.M
Singularity, resolution of 16.L 23.D 418.B
Singularity, space of 390.E
Singularity, theory of 418
Sinh (hyperbolic sine) 131.F
Sinha, Kalya B. 375.r
Sink 126.G 281.C
Sinnott, W. 450.J
Sinusoid 93.D
Sinusoidal wave 446
Sirao, Tunekiti(1924-) 45.I 45.r
Site 16.AA
Site etale 16.AA
Site flat 16.AA
Site percolation process 340.D
Site Zariski 16. A A
Site, presheaf on 16. A A
Sitnikov, Kirill Aleksandrovich(1926-) 117.D
Siu Yum-Tong(1943-) 195.r 232.C 364.r
Size (complexity of computation) 71.A
Size (of a balanced array) 102.L
Size (of a population) 397.B
Size (of a random sample) 396.B
Size (of a sample) 401.E
Size (of a test) 400.A
Size block 102.B
Size sample 373.A
Size step 303.B
Sjolin, PerB.(1943-) 159.r
Skeleton (of a domain in ) 21.C
Skeleton r- (of a Euclidean complex) 70.B
Skew field 149.A 368.B
Skew h-matrix 269.I
Skew product (of measure-preserving transformations) 136.D
Skew surface 111.I
Skew-Hermitian form 256.Q
Skew-Hermitian matrix 269.I
Skew-symmetric (multilinear mapping) 256.H
Skew-symmetric matrix 269.B
Skew-symmetric tensor 256.N
skewness 396.C 397.C
Skewness, coefficient of 341.H
Skibinsky, Morris(1925-) 396.J
Skitovich — Darmois theorem 374.H
Skitovich, Viktor Pavlovich 374.H
Skolem paradox 156.E
Skolem theorem on the impossibility of characterizing the system of natural numbers by axioms 156.E
Skolem — Loewenheim Theorem 156.E
Skolem, Albert Thoralf(1887-1963) 97.B 118.C 118.D 156.E 156.r 276.D 293.A
Skornyakov, Lev Anatol’evich(1924-) 85.r
Skorokhod, Anatolii Vladimirovich(1930-) 44.r 115.D 115.r 250.E 250.r 406.D 406.F 406.r
Skramstad, H.K. 433.A
SL(n,K) (special linear group) 60.B
Slack variable 255.A
Slackness, Tucker theorem on complementary 255.B
Slant product (of a cochain and a chain) 201.K
Slant product (of a cohomology class and a homology class) 201.K
Slater constraint qualification 292.B
Slater, Lucy Joan 167.r 206.r 292.B NTR
Slender body theorem 205.B
Slice knot 235.G
Slice representation 431.C
Slice theorem, differentiable 431.C
Slicing theorem, watermelon- 125.DD
Slide rule 19.A
Sliding block code 213.E
Slit (of a plane domain) 333.A
Slit domain 333.A
Slit mapping extremal horizontal 367.G
Slit mapping extremal vertical 367.G
Slodowy, Peter(1948-) 418.r
Slope function 46.C
Slow wave 259
Slowikowski, Wojciech(1932-) 424.X
Slowly increasing -function 125.O
Slowly increasing distribution 125.N
Slowly increasing function in the sense of Deny 338.P
Slowly increasing sequences 168.B
Smale condition C, Palais — 279.E 286.Q
Smale diffeomorphism, Morse — 126.J
Smale flow, Morse — 126.J
Smale theorem, Sard — 286.P
Smale vector field, Morse — 126.J
Smale, Stephen(1930-) 65.C 105.Z 105.r 114.A 114.B 114.D 114.F 114.r 126.A 126.J 126.K 126.r 136.G 183 279.D 279.E 286.P 286.Q 426
Small inductive dimension (ind) 117.B
Small numbers, law of 250.B
Small sample 401.F
Small set of order U 436.G
Small, Charles(1943-) 29.r
Small-displacement theory of elasticity 271.G
Smaller topology 425.H
| Smart, D.R. 153.r
Smart, William Marshall(1889-) 55.r 392.r
Smash product 202.F
Smashing (a space to a point) 202.E
Smirnov test statistic, Kolmogorov — 374.E
Smirnov test, Kolmogorov — 317.F
Smirnov theorem 250.F
Smirnov, Modest Mikhailovich(1921-) 326.r
Smirnov, Nikolai Vasil’evich(1900-66) 250.F 250.r 374.E STR
Smirnov, Vladimir Ivanovich(1887-1974) 20.r 106.r 216.r 371.F
Smirnov, Yurii Mikhallovich(1921-) 273.K
Smith conjecture 235.E
Smith convergence, Moore — 87.H
Smith theorem 431.B
Smith, Brian T.(1942-) 298.r 301.O
Smith, David Eugene(1860-1944) 187.r
Smith, Gordon Dennis 304.r
Smith, Guy Watson(1885-) 19.r
Smith, H.L. 87.H 87.K 87.r
Smith, Henry John Stephen(1826-83) 179.B
Smith, J.M. 263.r
Smith, Kennan Tayler(1926-) 276.E 338.E
Smith, Paul Althaus(1900-80) 235.E 431.B
Smith, Paul John(1943-) 151.I
Smithies, Frank(1912 ) 217.r
Smooth (function) 106.K
Smooth (measure for a Riemann metric) 136.G
Smooth (morphism of schemes) 16.F
Smooth (point of a variety) 16.F
Smooth boundary, domain with (in a -manifold) 105.U
Smooth characteristic class of foliations 154.G
Smooth in the sense of A. Zygmund 168.B
Smooth invariant measure 126.J
Smooth manifold 105.D 114.B
Smooth piecewise (curve) 364.A
Smooth structure 114.B
Smooth uniformly (normed linear space) 37.G
Smooth variety 16.F
Smoothing (of a combinatorial manifold) 114.C
Smoothing problem 114.C
Smorodinsky, Meir(1936-) 136.E
Smullyan, Raymond M. 411.r
Smyth, Brian 275.F 365.H 365.L
Smythe, Robert T.(1941-) 340.r
Sn 134.J App. Table
Snapper polynomial 16.E
Snapper, Ernst(1913-) 16.E 200.M
Sneddon, Ian Naismith(1919-) 389.r
Sneddon, W.J. 336.r
Snell(Snel van Roijen, Snellius), Willebrord(1580-1626) 180.A
Snell, James Laurie(1925-) 260.J
Sobolev inequality, Hardy — Littlewood — 224.E
Sobolev space 168.B
Sobolev — Besov embedding theorem 168.B
Sobolev, Sergei L’vovich(1908-) 20 46.r 125.A 162 168.B 168.r 224.E 320.r 323.G 325.r
Sobolevskii, Pavel Evseevich(1930-) 251.r 286.r 378.I 378.J
Software 75.C
Sohncke, Leonhard(1842-1897) 92.F
Sojourn time density 45.G
Solenoidal (vector field) 442.D
Solid geometry 181
Solid harmonics 393.A
Solid n-sphere 140
Solid sphere 140
Solid sphere topological 140
Solitar, Donald Moiseevitch(1932-) 161.r
Solitary wave 387.B
Soliton 387.B
Solovay, Robert M.(1938-) 22.F 22.H 33.E 33.F 33.r
Solution (of a functional-differential equation) 163.C
Solution (of a partial differential equation) 320.A
Solution (of a system of differential equations) 313.B
Solution (of a system of linear equations) 269.M
Solution (of a system of partial differential equations) 428.B
Solution (of an inequality) 211.A
Solution (of an ordinary differential equation) 313.A
Solution (of equations of neutral type) 163.H
Solution (of partial differential equations of first order) App. A Table
Solution (of partial differential equations of second order) App. A Table
Solution algebraic (of an algebraic equation) 10.D
Solution asymptotic 325.L
Solution basic 255.A
Solution basic feasible 255.A
Solution basic optimal 255.A
Solution Bayes 398.B
Solution Bayes, in the wider sense 398.B
Solution by quadrature App. A Table
Solution by radicals (of an algebraic equation) 10.D
Solution classical (to Plateau’s problem) 275.C
Solution complete (of partial differential equations) 320.C
Solution curve (of ordinary differential equations) 316.A
Solution Douglas — Rado (to Plateau’s problem) 275.C
Solution d’Alembert 325.D
Solution elementary (of a differential operator) 112.B
Solution elementary (of a linear partial differential operator) 320.H
Solution elementary (of a partial differential operator) App. A Table
Solution elementary (of partial differential equations of elliptic type) 323.B
Solution equilateral triangle 420.B
Solution feasible (of a linear equation in linear programming) 264.A
Solution formal (for a system of ordinary differential equations) 289.C
Solution fundamental (of a Cauchy problem) 325.D
Solution fundamental (of a differential operator) 112.B
Solution fundamental (of a linear parabolic equation with boundary conditions) 327.F
Solution fundamental (of a linear partial differential operator) 320.H
Solution fundamental (of a partial differential equation of parabolic type) 327.D
Solution fundamental (of a partial differential operator with -coefficients) 189.C
Solution fundamental (of an evolution equation) 189.C
Solution fundamental (of partial differential equations of elliptic type) 323.B
Solution fundamental system of (of a homogeneous system of linear differential equations of first order) 252.H
Solution general (of a differential equation) 313.A
Solution general (of a general partial differential equation) 320.C
Solution general (of a nonhomogeneous linear difference equation) 104.D
Solution general (of a system of differential equations) 313.C
Solution general (of a system of partial differential equations) 428.B
Solution general (of partial differential equations) 320.C
Solution generalized Bayes 398.B
Solution genuine 323.G
Solution half-periodic (of the Hill equation) 268.E
Solution Hopf’s weak 204.C
Solution inner 25.B
Solution Kirchhoff 325.D
Solution maximum 316.E
Solution minimax 398.B
Solution minimum 316.E
Solution Nash bargaining 173.C
Solution numerical (of algebraic equations) 301
Solution numerical (of integral equations) 217.N
Solution numerical (of linear equations) 302
Solution numerical (of ordinary differential equations) 303
Solution numerical (of partial differential equations) 304
Solution of boundary value problems App. A Table
Solution of the Cauchy problem 325.D
Solution operator 163.E
Solution optimal (of a linear programming problem) 255.A
Solution optimal (of a nonlinear programming problem) 292.A
Solution ordinary (of a differential ideal) 428.E
Solution outer 25.B
Solution particular (for a system of differential equations) 313.C
Solution particular (of a differential equation) 313.A
Solution particular (of partial differential equations) 320.C
Solution periodic (of the Hill equation) 268.E
Solution Perron — Brelot (of the Dirichlet problem) 120.C
Solution Perron — Wiener — Brelot (of the Dirichlet problem) 120.C
Solution Poisson 325.D
Solution primary (of a homogeneous partial differential equation) 320.E
Solution primitive (of a partial differential equation) 320.E
Solution principal 104.B
Solution quasiperiodic (of the Hill equation) 268.B
Solution regular (of a differential ideal) 428.E
Solution singular App. A Table
|
|
 |
Реклама |
 |
|
|