|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
 |
Предметный указатель |
Transformation(s) Kelvin 193.B
Transformation(s) Laguerre 76.B
Transformation(s) Landen 134.B App. Table
Transformation(s) Legendre 82.A App. Table
Transformation(s) Lie (in circle geomtry) 76.C
Transformation(s) Lie line-sphere 76.C
Transformation(s) linear (= linear fractional) 74.E
Transformation(s) linear (of a linear space) 251.A 256.B
Transformation(s) linear (of a sequence) 379.L
Transformation(s) linear fractional 74.E
Transformation(s) local, local Lie group of 431.G
Transformation(s) local, local one-parameter group of 105.N
Transformation(s) locally quadratic (of a complex manifold) 72.H
Transformation(s) locally quadratic (of an algebraic surface) 15.G
Transformation(s) locally quadratic (of an algebraic variety) 16.K
Transformation(s) Lorentz 359.B
Transformation(s) loxodromic 74.F
Transformation(s) measurable (on a measure space) 136.B
Transformation(s) measure-preserving 136.B
Transformation(s) Moebius 74.E 76.A
Transformation(s) monoidal (by an ideal sheaf) 16.K
Transformation(s) monoidal (of a complex manifold) 72.H
Transformation(s) monoidal (of an analytic space) 23.D
Transformation(s) monoidal, with center W 16.K
Transformation(s) natural 52.J
Transformation(s) nonsingular (of a linear space) 256.B
Transformation(s) nonsingular (on a measure space) 136.B
Transformation(s) normal (of a sequence) 379.L
Transformation(s) of drift 406.B
Transformation(s) of local coordinates 90.D
Transformation(s) of the parameter 111.D
Transformation(s) one-parameter group of 105.N
Transformation(s) one-parameter group of class 126.B
Transformation(s) orthogonal 139.B 348.B
Transformation(s) orthogonal (over a noncommutative field) 60.O
Transformation(s) orthogonal (with respect to a quadratic form) 60.K
Transformation(s) orthogonal, around the subspace 139.B
Transformation(s) parabolic 74.F
Transformation(s) parity 359.B
Transformation(s) particular (of ) 248.R
Transformation(s) Picard — Lefschetz 16.U
Transformation(s) projective 343.D
Transformation(s) projective (of a Riemannian manifold) 367.F
Transformation(s) projective, group of 343.D
Transformation(s) pseudoconformal 344.A
Transformation(s) pseudogroup of (on a topological space) 90.D
Transformation(s) quadratic 16.I 16.K
Transformation(s) quantized contact 274.F
Transformation(s) regular (of a linear space) 256.B
Transformation(s) regular (of a sequence) 379.L
Transformation(s) regular projective 343.D
Transformation(s) Schwarz — Christoffel 77.D
Transformation(s) semilinear 256.P
Transformation(s) semiregular (of a sequence) 379.L
Transformation(s) shift 136.D
Transformation(s) singular projective 343.D
Transformation(s) singular projective, of the hth species 343.D
Transformation(s) superharmonic 261.F
Transformation(s) symplectic 60.L
Transformation(s) symplectic (over a noncummutative field) 60.O
Transformation(s) to an equilibrium system 82.D
Transformation(s) to principal axes 390.B
Transformation(s) totally regular (of a sequence) 379.L
Transformation(s) triangular (linear) 379.L
Transformation(s) unitary 348.F
Transformation(s) unitary (relative to an -Hermitian form) 60.O
Transformation(s) weakly equivalent 136.F
Transgression (homomorphism of cohomology groups) 200.M
Transgression (in the spectral sequence of a fiber space) 148.E
Transgressive (element in the spectral sequence of a fiber space) 148.E
Transient (Levy process) 5.G
Transient (Markov chain) 260.B
Transient (Markov process) 261.B
Transient problem 322.D
Transition (of a Markov chain) 260.A 261.B
Transition function (of a fiber bundle) 147.B
Transition function (of a Markov chain) 260.A
Transition function (of a Markov process) 261.B
Transition function Feller 261.B
Transition matrix 126.J 260.A
Transition order-disorder 402.F
Transition phase 340.B
Transition point 254.F
Transition probability (in quantum mechanics) 351.B
Transition probability (of a diffusion process) 115.B
Transition probability (of a Markov chain) 260.A
Transition probability (of a Markov process) 261.A
Transition probability standard 260.F
Transitive (dynamical system) 126.I 126.J
Transitive (operation of a group) 362.B
Transitive (permutation representation) 362.B
Transitive (relation) 358.A
Transitive extension (of a permutation group) 151.H
Transitive fully (subgroup of an orthogonal group) 92.C
Transitive k- (permutation group) 151.H
Transitive k-ply (G-set) 362.B
Transitive k-ply (permutation group) 151.H
Transitive law (in an equivalence relation) 135.A
Transitive law (on ordering) 311.A
Transitive multiply (permutation group) 151.H
Transitive permutation group 151.H
Transitive simply (G-set) 362.B
Transitively (act on G-space) 431.A
Transitivity, system of (of a G-set) 362.B
Translation group (of a Lorentz group) 258.A
Translation number 18.B 18.D
Translation operator 306.C
Translation representation theorem 375.H
Translation theorem (in class field theory) 59.C
Translation(s) (in an affine space) 7.E
Translation(s) group of (of an affine space) 7.E
Translation(s) left 249.A 362.B
Translation(s) parallel 80.C 364.B
Translation(s) right 249.A 362.B
Translational flow 126.L 136.G
Translational flow, frequencies of 126.L 136.G
Transmission coefficient 387.D
Transmission rate 213.A
Transonic flow 205.B
Transonic similarity, von Karman 205.D
Transport coefficient 402.K
Transport equations 325.L
Transportation problem 255.C
Transpose (of a linear mapping) 256.G
Transpose (of a rational homomorphism) 3.E
Transposed integral equation 217.F
Transposed mapping (of a diffusion kernel) 338.N
Transposed mapping (of a linear mapping) 256.G
Transposed matrix 269.B
Transposed operator 112.E 189.C 322.E
Transposed representation 362.E
Transposition (in a symmetric group) 151.G
Transvection 60.O
Transversal (matroid) 66.H
Transversal field 136.G
Transversal flow 136.G
Transversal homoclinic point 126.J
Transversality condition 108.B
Transversality condition strong 126. J
Transversality theorem 105.L
Transversality, condition of (in calculus of variations) 46.B
Transverse (foliations) 154.H
Transverse (to a submanifold of a differentiable manifold) 105.L
Transverse axis (of a hyperbola) 78.C
Transverse electric waves 130.B
Transverse electromagnetic waves 130.B
Transverse invariant measure 154.H
Transverse magnetic waves 130.B
Transverse structure 154.H
Transverse to a foliation 154.B
| Transverse wave 446
Transversely (intersect) 105.L
Transversely orientable 154.B
Trap (of a diffusion process) 115.B
Trap (of a Markov process) 261.B
Trapezoidal rule (of numerical integration) 299.A
Trapezoidal rule (of numerical solution of ordinary differential equations) 303.E
Traub, Joe Fred(1932-) 71.r 301.r
Treatment 102.B
Treatment combinations, number of 102.L
Treatment connected 102.B
Treatment contrast 102.C
Treatment effect 102.B
TREE 93.C 186.G
Tree co- 186.G
Tree code 213.E
Tree derivation 31.E
Tree representation 96.D
Tree spanning 186.G
Tree structure 96.D
Trefftz, Erich Immanuel(1888-1937) 46.F
Trefoil knot 235.C
Trellis code 213.E
Tremolieres, Raymond(1941-) 440.r
Trend 397.N
Treves, J.Francois(1930-) 112.D 112.L 125.r 274.I 286.Z 320.I 320.r 321.r 345.A 345.B 424.r
Triad 202.M
Triad homotopy exact sequence of 202.M
Triad homotopy group of 202.M
Trial path dependent, d- (response probability) 346.G
triangle 7.D 155.F 178.H
Triangle comparison theorem 178.A
Triangle geodesic 178.A
Triangle inequality 273.A
Triangle Pascal 330
Triangle plane App. A Table
Triangle polar 78.J
Triangle Reuleaux 89.E 111.E
Triangle self-polar 78.J
Triangle solving a 432.A
Triangle spherical 432.B App. Table
Triangle test 346.E
Triangulable 65.A
Triangular (linear transformation) 379.L
Triangular element 304.C
Triangular factorization 302.B
Triangular matrix 269.B
Triangular matrix lower 269.B
Triangular matrix upper 269.B
Triangular number 4.D
Triangulated manifold 65.B
Triangulation 65.A 70.C
Triangulation - 114.C
Triangulation combinatorial 65.C
Triangulation combinatorial, problem 65.C
Triangulation finite 70.C
Triangulation, compatible with 114.C
Trick, Alexander’s 65.D
Triclinic (system) 92.E
Tricomi differential equation 326.C
Tricomi problem 326.C
Tricomi, Francesco Giacomo(1897-1978) 217.N 217.r 288.C 317.r 326.C 326.r
Tridiagonal matrix 298.D
Triebel, Hans(1936-) 168.r 224.r
Trigamma function 174.B
Trigg, G.L. 414.r
Trigonal (system) 92.E
Trigonometric function 131.E 432.A App. Table
Trigonometric function inverse 131.E
Trigonometric integral 160.A
Trigonometric interpolation polynomial 336.E
Trigonometric polynomial, generalized 18.B
Trigonometric series 159.A
Trigonometric series generalized 18.B
Trigonometric sum 4.C
Trigonometric system 159.A
Trigonometry 432 App. Table
Trigonometry plane 432.A
Trigonometry spherical 432.B
Trilinear coordinates 90.C
Trimmed mean, - 371.H
Triple 20O.Q 200.L
Triple homotopy exact sequence of 202.L
Triple product, scalar, vector 442.C App. Table
Triplet, Gel’fand 424.T
Tripolar coordinates 90.C
Trisection of an angle 179.A
Tristram, Andrew G. 114.K
Trivalent map 157.B
Trivial (extension) 390.J
Trivial (knot) 65.D 235.A
Trivial bundle 147.E
Trivial fiber space, locally 148.B
Trivial K- (torus) 13.D
Trivial sheaf 383.D
Trivial solution (of a system of linear homogeneous equations) 269.M
Trivial topology 425.C
Trivial valuation 439.C 439.F
Trivialization (of a block bundle) 147.Q
Trivially (act on a G-space) 431.A
Trjitzinsky, Waldemar Joseph(1901-1973) 254.D 289.C 289.D 314.A
Trochoid 93.H
Tromba, Anthony J.(1943-) 275.C 275.r 286.D
Trotter product formula 351.F
Trotter, Hale Freeman(1931-) 235.C 351.F 378.E
Trubowitz, Eugene B.(1951-) 387.E
Trudinger, Neil Sidney(1942-) 364.H
TRUE 411.E
True anomaly 309.B
True value of a parameter 398.A
Truesdell, Clifford Ambrose T.(1919-) 389.B
Truncated Wightman function 150.D
Truncation error 138.B 303.B
Truncation error local 303.E
Truth definition 185.D
Truth function 411.E
Truth value (of a formula) 411.E
Trvch-Pohlmever, E.B. 402.G
Tschebyscheff see Chebyshev
Tsen theorem 27.E 118.F
Tsen, Chung-Tze 27.E 118.F
Tsirel’son, B.S. 406.D
Tsu, Ch’ung-Chih(429-500) 57.A 332
Tsuboi, Takashi(1953-) 154.G
Tsuchiya, Nobuo(1950-) 154.G 154.H
Tsuda, Takao(1932-) 354.r
Tsuji, Masatsugu(1894-1960) 48.r 62.B 62.D 124.C 234.r 242.A 367.r 388.B
Tsuji, Tadashi(1946-) 384.B
Tsukada, Kazumi(1953-) 365.N 391.N
Tsukamoto, Tatsuo(1940-) 353.r
Tsukamoto, Yotaro(1932-74) 178.B
Tsushima, Ryuji(1952-) 32.r
Tsuzuku,Tosiro(1929-) 13.R
Tube 126.E
Tube regular 193.K
Tube vector 442.D
Tuboid 125.V
Tubular neighborhood 105.L 114.B 364.C
Tubular neighborhood open 105.L 114.B
Tubular neighborhood system, controlled 418.G
Tucker theorem on complementary slackness 255.B
Tucker theorem, Kuhn — 292.B
Tucker, Albert William(1905-) 173.r 255.B 255.E 292.A 292.B
Tugue, Tosiyuki(1926-) 22.C 81 356.G 356.r
Tukey, John Wilder(1915 ) 34.r 87.r 142.D 142.r 304.r 371.A 371.r 397.r 421.C 421.r 425.X 425.r 436.r
Tumarkin, Lev Abramovich(1904-1974) 117.I
Tumura, Yosiro(1912-) 17.C 17.D 62.D
Tung, Chuan 57.A
Tuple, n- 256.A 381.B
Turan, Pal(Paul)(1910-1976) 123.D 123.r
|
|
 |
Реклама |
 |
|
|