Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Regular conditional probability      342.E
Regular cone      384.A
Regular cone self-dual      384.E
Regular covering (space)      91.A
Regular element (of a ring)      368.B
Regular element p-(of a finite group)      362.I
Regular embedding      105.K
Regular extension (of a field)      149.K
Regular factorization      251.N
Regular first integral      126.H
Regular form      16.O
Regular function(s)      198.A
Regular function(s) at a subvariety      16.B
Regular function(s) on an open set (of a variety)      16.B
Regular function(s), sheaf of germs of      16.B
Regular grammar      31.D
Regular graph      186.C
Regular homogeneously      275.C
Regular integral element      191.I 428.E
Regular integral manifold (of a differential ideal)      428.E
Regular knot projection      235.A
Regular local equation (at an integral point)      428.E
Regular local ring      284.D
Regular mapping (between prealgebraic varieties)      16.C
Regular mapping of class $C^1$      208.B
Regular matrix      269.B
Regular measure      270.F
Regular measure $\mathscr{B}$-      270.F
Regular measure K-      270.F
Regular n-gon      357.A
Regular neighborhood      65.C
Regular neighborhood system      65.C
Regular of the hth species      343.E
Regular outer measure      270.E
Regular perturbation      331.D
Regular point (for a Hunt process)      261.D
Regular point (in catastrophe theory)      51.F
Regular point (of a differentiable mapping)      105.J
Regular point (of a diffusion process)      115.B
Regular point (of a polyhedron or cell complex)      65.B
Regular point (of a surface in $E^3%)      111.J
Regular point semi- (of a surface in $E^3$)      111.J
Regular polygon      357.A
Regular polyhedra      357.B
Regular polyhedral angle      357.B
Regular polyhedral group      151.G
Regular positive Radon measure      270.H
Regular process, positively      44.C
Regular projective transformation      343.D
Regular representation (of a group)      362.B
Regular representation (of a locally compact group)      69.B
Regular representation (of a topological transformation group)      437.A
Regular representation left (of a group)      362.C
Regular representation left (of an algebra)      362.C
Regular representation right (of a group)      362.E
Regular representation right (of an algebra)      362.E
Regular ring      284.D
Regular ring (continuous geometry)      85.B
Regular sequence (of Lebesgue measurable sets)      380.D
Regular singular point      254.B
Regular singularity (of a coherent $\mathscr{E}$-module)      274.H
Regular solution (of a differential ideal)      428.E
Regular space      425.Q
Regular space completely      425.Q
Regular submanifold (of a $C^\infty$-manifold)      105.L
Regular system of algebraic equations      10.A
Regular system of parameters (of a local ring)      284.D
Regular transformation (of a linear space)      256.B
Regular transformation (of a sequence)      379.L
Regular transformation totally (of a sequence)      379.L
Regular tube      193.K
Regular value      105.J
Regularity abscissa of (of a Dirichlet series)      121.B
Regularity up to a boundary      112.F
Regularity, axiom of (in axiomatic set theory)      33.B
Regularity, parameter of (of a Lebesgue measurable set)      380.D
Regularization (of a distribution)      125.M
Regularizing (kernel)      125.L
Regularly convex set      89.G
Regularly homotopic (immersion)      114.D
Regularly hyperbolic (partial differential equation)      325.A 325.F
Regulator (of an algebraic number field)      14.D
Regulator (of an algebraic number field) p-adic      450.J
Regulator problem, optimal      80.F
Reich, Edgar(1927-)      352.C
Reid, Constance      196.r
Reid, Miles A.(1948-)      16.r
Reid,JohnKer(1938-)      302.r
Reidemeister, Kurt Werner Friedrich(1893-1971)      91.r 155.r 235.A 235.r
Reif, Frederick(1927-)      402.r
Reifenberg, E.R.      275.A 275.G 334.F
Reilly, Robert C.      365.H
Reiner, Irving(1924-)      29.r 92.r 151.r 277.r 362.r
Reinhardt domain      21.B
Reinhardt domain complete      21.B
Reinhardt, Hans      59.F
Reinhardt, Karl      21.B 21.Q
Reinsch, C(1934-)      298.r 300.r
Reiteration theorem      224.D
Rejection      400.A
Related differential equation      254.F
Relation(s)      358
Relation(s) (among elements of a group)      190.C
Relation(s) (among the generators of a group)      161.A
Relation(s) Adem (for Steenrod pth power operations)      64.B
Relation(s) Adem (for Steenrod square operations)      64.B
Relation(s) analytic, invariance theorem of      198.K
Relation(s) antisymmetric      358.A
Relation(s) binary      358.A 411.G
Relation(s) canonical anticommutation      377.A
Relation(s) canonical commutation      351.C 377.A 377.C
Relation(s) coarser      135.C
Relation(s) defining (among the generators of a group)      161.A
Relation(s) dispersion      132.C
Relation(s) equivalence      135.A 358.A
Relation(s) Euler      419.B
Relation(s) finer      135.C
Relation(s) Fuchsian      253.A
Relation(s) functional (among components of a mapping)      208.C
Relation(s) functional, of class $C^r$      208.C
Relation(s) fundamental (among the generators of a group)      161.A 419.A
Relation(s) Gibbs — Duhem      419.B
Relation(s) Heisenberg uncertainty      351.C
Relation(s) Hurwitz (on homomorphisms of Abelian varieties)      3.K
Relation(s) identity      102.I
Relation(s) incidence      282.A
Relation(s) inverse      358.A
Relation(s) Legendre      134.F App. Table
Relation(s) Maxwell      419.B
Relation(s) n-ary      411.G
Relation(s) normal commutation      150.D
Relation(s) order      311.A
Relation(s) orthogonality (for square integrable unitary representations)      437.M
Relation(s) orthogonality (on irreducible characters)      362.G
Relation(s) period      11.C
Relation(s) Pluecker (on Pluecker coordinates)      90.B
Relation(s) prey-predator      263.B
Relation(s) proper equivalence (in an analytic space)      23.E
Relation(s) Rankine — Hugoniot      204.G 205.B
Relation(s) reciprocity, Onsager’s      402.K
Relation(s) reflexive      358.A
Relation(s) Riemann period      3.L 11.C
Relation(s) Riemann — Hurwitz      367.B
Relation(s) stronger      135.C
Relation(s) symmetric      358.A
Relation(s) transitive      358.A
Relation(s) weaker      135.C
Relationship algebra      102.J
Relative (of a prime ideal over a field)      14.I
Relative Alexander cohomology group      201.M
Relative algebraic number field      14.I
Relative boundary      367.B
Relative Bruhat decomposition      13.Q
Relative Cech cohomology group      201.M
Relative Cech homology group      201.M
Relative chain complex      200.C
Relative cochain complex      200.F
Relative cohomology group      215.W
Relative complement (at two sets)      381.B
Relative components (of a Lie transformation group)      110.A
Relative consistency      156.D
Relative degree (of a finite extension)      257.D
Relative degree (of a prime ideal over a field)      14.I
Relative derived functor      200.K
Relative different      14.J
Relative discriminant      14.J
Relative entropy      212.B
Relative extremum, conditional      106.L
Relative frequency (of samples)      396.C
Relative homological algebra      200.K
Relative homotopy group      202.K
Relative integral invariant      219.A
Relative integral invariant Cartan’s      219.B
Relative invariant      12.A 226.A
Relative invariant measure      225.H
Relative maximum (of a function)      106.L
Relative Mayer — Vietoris exact sequence      201.L
Relative minimum (of a function)      106.L
Relative neighborhood      425.J
Relative norm (of a fractional ideal)      14.I
Relative nullity, index of      365.D
Relative open set      425.J
Relative ramification index (of a prime ideal over a field)      14.I
Relative singular homology group      201.L
Relative stability      303.G
Relative stability, interval of      303.G
Relative stability, region of      303.G
Relative topology      425.J
Relative uniform star convergence      310.F
Relative uniformity      436.E
Relatively ample sheaf      16.E
Relatively bounded (with respect to a linear operator)      331.B
Relatively closed set      425.J
Relatively compact (maximum likelihood method)      399.M
Relatively compact (set)      425.S
Relatively compact (subset)      273.F
Relatively compact (with respect to a linear operator)      331.B
Relatively dense      126.E
Relatively invariant measure      225.H
Relatively minimal      15.G 16.I
Relatively minimal model      15.G
Relatively open set      425.J
Relatively prime (fractional ideals)      14.E
Relatively prime (numbers)      297.A
Relatively stable      303.G
Relativistically covariant      150.D
Relativity, general principle of      359
Relativity, general theory of      359.A
Relativity, special principle of      359
Relativity, Special Theory of      359.A
Relativization (of a definition of primitive recursive functions)      356.B
Relativization (of a topology)      425.J
Relativization (of a uniformity)      436.E
Relativized      356.F
Relaxation      215.A
Relaxation oscillation      318.C
Relaxation with projection      440.E
Relaxed continuity requirements, variational principles with      271.G
Rellich lemma      68.C
Rellich theorem      323.G
Rellich uniqueness theorem      188.D
Rellich — Dixmier theorem      351.C
Rellich — Kato theorem      331.B
Rellich, Franz(1906-1955)      68.C 188.D 323.G 331.A 331.B 351.C
Remainder      297.A 337.C
Remainder (in Taylor’s formula)      106.E
Remainder Cauchy      App. A Table
Remainder Lagrange      App. A Table
Remainder Roche — Schloemilch      App. A Table
Remainder theorem      337.E
Remainder theorem Chinese      297.G
Remainder theorem Remak — Schmidt theorem, Krull- (in group theory)      190.L
Remak, Robert(1888-?)      190.L 277.I
Remes, E.      142.B
Remmert theorem      23.C
Remmert — Stein continuation theorem      23.B
Remmert, Reinhold(1930-)      20 21.M 21.Q 21.r 23.B—E 23.r 199.r
Remoundos, Georgios(1878-1928)      17.A 17.C 17.r
Removable (set for a family of functions)      169.C
Removable singularity (of a complex function)      198.D
Removable singularity (of a harmonic function)      193.L
Renaissance mathematics      360
Renewal equation      260.C
Renewal Theorem      260.C
Rengel, Ewald      77.E
Renormalizable      111.B 132.C 150.C
Renormalizable super      150.C
Renormalization constant      150.C
Renormalization equation      111.B
Renormalization group      111.A
Renormalization method      111. A
Renyi theorem      123.E
Renyi, Alfred(1921-1970)      4.C 123.E
Reoriented graph      186.B
Repeated integral (for the Lebesgue integral)      221.E
Repeated integral (for the Riemann integral)      216.G
Repeated series by columns      379.E
Repeated series by rows      379.E
Replacement, axiom of      33.B 381.G
Replacement, model      307.C
Replica      13.C
Replication      102.A
Replication, number of      102. B
Represent (a functor)      52.L
Represent (an ordinal number)      81.B
Representable (functor)      52.L
Representable linearly (matroid)      66.H
Representation module (of a linear representation)      362.C
Representation module faithful      362.C
Representation problem (on surfaces)      246.I
Representation ring      237.H
Representation space (of a Banach algebra)      36.D
Representation space (of a Lie algebra)      248.B
Representation space (of a Lie group)      249.O
Representation space (of a unitary representation)      437.A
Representation(s)      362.A
Representation(s) (of a Banach algebra)      36.D
Representation(s) (of a Jordan algebra)      231.C
Representation(s) (of a knot group)      235.E
Representation(s) (of a lattice)      243.E
Representation(s) (of a Lie algebra)      248.B
Representation(s) (of a mathematical system)      362.A
Representation(s) (of a vector lattice)      310.D
Representation(s) (of an algebraic system)      409.C
Representation(s) absolutely irreducible      362.F
Representation(s) adjoint (of a Lie algebra)      248.B
Representation(s) adjoint (of a Lie group)      249.P
Representation(s) adjoint (of a representation)      362.E
Representation(s) analytic (of GL(V))      60.B
Representation(s) canonical (of Gaussian processes)      176.E
Representation(s) completely reducible      362.C
Representation(s) complex (of a Lie group)      249.O
Representation(s) complex conjugate      362.F
Representation(s) conjugate      362.F
Representation(s) contragredient      362.E
Representation(s) coregular (of an algebra)      362.E
Representation(s) cyclic (of a C*-algebra)      36.G
Representation(s) cyclic (of a topological group)      437.A
Representation(s) differential (of a unitary representation of a Lie group)      437.S
Representation(s) direct sum of      362.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте