Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Strength      102.L
Stress      271.G
Stress normal      271.G
Stress shearing      271.G
Stress tangential      271.G
Stress tensor      150.B 271.G
Stress tensor Maxwell      130.A
Strict Albanese variety      16.P
Strict implication      411.L
Strict localization      16.AA
Strict morphism (between topological groups)      423.J
Strictly concave function      88.A
Strictly convex function      88.A
Strictly decreasing function      166.A
Strictly ergodic (homeomorphism on a compact metric space)      136.H
Strictly G-stationary (system of random variables)      395.I
Strictly increasing function      166.A
Strictly inductive limit (of a sequence of locally convex spaces)      424.W
Strictly monotone function      166.A
Strictly monotone function (of ordinal numbers)      312.C
Strictly of Polya type (a family of probability densities)      374.J
Strictly positive (element in $E^n$)      310.H
Strictly pseudoconvex      344.A
Strictly stable process      5.F
Strictly stationary process      395.A
Strictly stationary random distribution      395.H
String $\alpha$-      248.L
String equation of a vibrating      325.A
String model      132.C
Strip bicharacteristic      320.B
Strip characteristic      320.D 324.B
Strip condition      320.D
Strip Moebius      410.B
Strong (boundary component)      77.E
Strong convergence (of operators)      251.C
Strong convergence theorem (on distributions)      125.G
Strong deformation retract      202.D
Strong dilation      251.M
Strong dual (space)      424.K
Strong extension (of a differential operator with boundary condition)      112.F
Strong extension (of a differential operator)      112.E
Strong infinity, axiom of      33.E
Strong integrability      443.I
Strong lacuna      325.J
Strong Law of Large Numbers      250.C
Strong Lefschetz theorem      16.U
Strong Markov process      261.B
Strong Markov property      261.B
Strong maximum principle      323.C
Strong measurability      443.I
Strong operator topology      251.C
Strong rigidity theorem      122.G
Strong solution (of a stochastic differential equation)      406.D
Strong solution (of Navier — Stokes equation)      204.C
Strong solution unique      406.D
Strong topology (on a direct product space)      425.K
Strong topology (on a family of measures)      338.E
Strong topology (on a normed space)      37.E
Strong topology (on a topological linear space)      424.K
Strong transversality condition      126.J
Stronger (equivalence relation)      135.C
Stronger (method of summation)      379.L
Stronger (topology)      425.H
Stronger (uniformity)      436.E
Stronger form of Cauchy’s integral theorem      198.B
Strongly acute type      304.C
Strongly closed subgroup      151.J
Strongly compact cardinal number      33.E
Strongly connected (graph)      186.F
Strongly connected components      186.F
Strongly continuous (Banach space-valued function)      37.K
Strongly continuous (in unitary representations)      437.A
Strongly continuous representation (of a topological space)      69.B
Strongly continuous semigroup      378.B
Strongly distinguished basis      418.F
Strongly elliptic (differential operator)      112.G
Strongly elliptic operator      323.H
Strongly embedded subgroup      151.J
Strongly exposed (of a convex set)      443.H
Strongly hyperbolic differential operator      325.H
Strongly inaccessible      33.F 312.E
Strongly inaccessible cardinal number      33.E
Strongly measurable      443.B 443.I
Strongly mixing automorphism      136.E
Strongly nonlinear differential equation      290.D
Strongly normal extension field      113
Strongly P-convex set      112.C
Strongly paracompact space      425.S
Strongly pseudoconvex domain      21.G
Strongly recurrent (measurable transformation)      136.C
Strongly separated (convex sets)      89.A
Strongly stationary process      395.A
Strongly stationary random distribution      395.H
Strongly, converge (in a Banach space)      37.B
Stroock, Daniel Wyler(1940-)      44.E 115.C 115.D 115.r 250.r 261.C 262.E 406.A 406.D 406.r
Stroud, Arthur H.      299.r
Stroyan, Keith Duncan(1944-)      293.r
Structural constants (of a Lie algebra)      248.C
Structural equation system, linear      128.C
Structural stability      290.A
Structural stability theorem      126.J
Structurally stable, $C^r$-      126.H
Structure equation (for a curvature form)      80.G
Structure equation (for a torsion form)      80.H
Structure equation (of an affine connection)      417.B
Structure equation linear, system      128.C
Structure function      191.C
Structure group (of a fiber bundle)      147.B
Structure morphism      52.G
Structure sheaf (of a prealgebraic variety)      16.C
Structure sheaf (of a ringed space)      383.H
Structure sheaf (of a variety)      16.B
Structure space (of a Banach algebra)      36.D
Structure theorem (on topological Abelian groups)      422.E
Structure theorem for von Neumann algebras of type III      308.I
Structure theorem of complete local rings      284.D
Structure(s)      409
Structure(s) $C^r$- (of a differentiabie manifold)      105.D 114.A
Structure(s) $C^r$-, Haefliger      154.F
Structure(s) $\Gamma$- (on a differentiable manifold)      105.Y
Structure(s) $\Gamma$- (on a topological space)      90.D
Structure(s) $\Gamma^r_q$-      154.E
Structure(s) $\Gamma_\varphi$-      154.H
Structure(s) (of a language)      276.B
Structure(s) almost complex      72.B
Structure(s) almost contact      110.E
Structure(s) almost contact metric      110.E
Structure(s) almost symplectic      191.B
Structure(s) analytic (in function algebras)      164.F
Structure(s) analytic (on a Riemann surface)      367.A
Structure(s) arithmetically equivalent      276.D
Structure(s) Cauchy Riemann      344.A
Structure(s) classifying space for $\Gamma^r_q$      154.E
Structure(s) coalition      173.D
Structure(s) compatible with $C^r$-      114.B
Structure(s) complex      105.Y
Structure(s) complex (in a complex manifold)      72.A
Structure(s) complex (on $\mathbf{R}^{2n}$)      3.H
Structure(s) complex (on a Riemann surface)      367.A
Structure(s) complex analytic (in a complex manifold)      72.A
Structure(s) conformal      191.B
Structure(s) conformal (on a Riemann surface)      367.A
Structure(s) contact      105.Y
Structure(s) contact metric      110.E
Structure(s) CR      344.A
Structure(s) data      96.B
Structure(s) deformation of complex      72.G
Structure(s) differentiable      114.B
Structure(s) differentiable, of class $C^r$      105.D
Structure(s) elementarily equivalent      276.D
Structure(s) equations (of a Euclidean space)      111.B
Structure(s) equations of (for relative components)      110.A
Structure(s) foliated      105.Y
Structure(s) G-      191
Structure(s) group of oriented differentiable (on a combinatorial sphere)      114.I
Structure(s) Hodge (of a vector space)      16.V
Structure(s) isomorphic      276.E
Structure(s) lacunary (of a power series)      339.E
Structure(s) level n (on an Abelian variety)      3.N
Structure(s) linear      96.C
Structure(s) mathematical      409.B
Structure(s) mixed      16.V
Structure(s) Neyman      400.D
Structure(s) normal      276.D
Structure(s) normal analytic      386.C
Structure(s) PL      65.C
Structure(s) pseudogroup      105.Y
Structure(s) real analytic      105.D
Structure(s) smooth      114.B
Structure(s) spin-      237.F 431.D
Structure(s) statistical      396.E
Structure(s) symplectic      219.C
Structure(s) tensor field of almost complex (induced by a complex structure)      72.B
Structure(s) topological      425.A 425.B
Structure(s) tree      96.D
Structure(s) twinning      92.D
Structure(s) uniform      436.B
Structure(s), jumping of      72.G
Struik, Dirk Jan(1894-)      187.r 266.r
Strutt, Maximilian Julius Otto(1903-)      133.r 268.r
Struve function      App. A Table
Struve, Friedrich George Wilhelm von(1793-1864)      39.G App.A Table
Stuart, Alan(1922-)      102.r 374.r 397.r 400.r
Student test      400.G
Student(Cosset, William Sealy)(1876-1936)      374.B 400.G 401.F
Stueckelberg, Ernst Carl Gerlach(1905-)      361.r
Sturm method      301.C
Sturm theorem (on real roots of an algebraic equation)      10.E
Sturm — Liouville operator      112.I
Sturm — Liouville problem      315.B
Sturm, Jacques Charles Francois(1803-55)      10.E 107.A 112.I 301.C 315.B
SU(n) (special unitary group)      60.F
Subadditive cuts      215.C
Subadditive ergodic theorem      136.B
Subadditive functional      88.B
Subadditive process      136.B
Subalgebra      29.A
Subalgebra *-      308.C
Subalgebra Borel (of a semisimple Lie algebra)      248.O
Subalgebra Cartan (of a Lie algebra)      248.I
Subalgebra Cartan (symmetric Riemann space)      413.F
Subalgebra closed (of a Banach algebra)      36.B
Subalgebra Lie      248.A
Subalgebra of a Lie algebra associated with a Lie subgroup      249.D
Subalgebra parabolic (of a semisimple Lie algebra)      248.O
Subbase for a space      425.F
Subbase for a topology      425.F
Subbialgebra      203.G
Subbundle (of a vector bundle)      147.F
Subbundle (of an algebraic vector bundle)      16.Y
Subcategory      52.A
Subcategory full      52.A
Subcoalgebra      203.F
Subcomplex (of a cell complex)      70.D
Subcomplex (of a chain complex)      200.H 201.B
Subcomplex (of a cochain complex)      201.H
Subcomplex (of a complex)      13.R
Subcomplex (of a Euclidean complex)      70.B
Subcomplex (of a simplicial complex)      70.C
Subcomplex (of an s.s. complex)      70.E
Subcomplex chain      200.C
Subcomplex cochain      200.F
Subcontraction      186.E
Subcritical (Galton — Watson process)      44.B
Subdifferential      88.D
Subdivision (of a Euclidean complex)      70.B
Subdivision (of a simplicial complex)      70.C
Subdivision (of a triangulation)      70.C
Subdivision barycentric (of a Euclidean complex)      70.B
Subdivision barycentric (of a simplicial complex)      70.C
Subdivision dual (of a triangulation of a homology manifold)      65.B
Subelliptic      112.D
Subfamily      165.D
Subfield      149.B
Subfield valuation over a      439.B 439.C
Subgraph      186.E
Subgroup $\Omega$-      190.E
Subgroup (of a group)      190.C
Subgroup (of a topological group)      423.D
Subgroup admissible      190.E
Subgroup admissible normal      190.E
Subgroup algebraic      13.A
Subgroup arithmetic      13.P 122.F 122.G
Subgroup Borel      13.G 249.J
Subgroup Cartan      13.H 249.I
Subgroup Carter      151.D
Subgroup closed      423.D
Subgroup commutator      190.H
Subgroup congruence      122.D
Subgroup connected Lie      249.D
Subgroup cyclic      190.C
Subgroup divisible      422.G
Subgroup Hall      151.E
Subgroup invariant      190.C
Subgroup irreducible discrete      122.F
Subgroup isotropy      431.A
Subgroup Iwahori      13.R
Subgroup k-Borel      13.G
Subgroup Levi-      13.Q
Subgroup Lie      249.D
Subgroup maximal torsion      2.A
Subgroup minimal parabolic k-      13.Q
Subgroup normal      190.G
Subgroup one-parameter      249.Q
Subgroup open      423.D
Subgroup p-Sylow      151.B
Subgroup parabolic      13.G 249.J
Subgroup principal congruence, of level N      122.D
Subgroup rational      404.B
Subgroup Schur      362.F
Subgroup stability      431.A
Subgroup standard parabolic k-      13.Q
Subgroup strongly closed      151.J
Subgroup strongly embedded      151.J
Subgroup subnormal      190.G
Subgroup Sylow      151.B
Subgroup toroidal      248.X
Subgroup torsion      2.A.C
Subgroup, sequences of      190.F
Subharmonic functions      193
Subharmonic functions almost      193.T
Subinvariant measure      261.F
Subjective probability      401.B
Sublattice      243.C
Submanifold (of a $C^\infty$-manifold)      105.L
Submanifold (of a Banach manifold)      286.N
Submanifold (of a combinatorial manifold)      65.D
Submanifold closed      105.L
Submanifold complex analytic      72.A
Submanifold immersed (of a Euclidean space)      111.A
Submanifold isotropic      365.D
Submanifold Kaehler      365.L
Submanifold minimal      275 365.D
Submanifold regular      105.L
Submanifold Riemannian      365.A
Submanifold totally geodesic      365.D
Submanifold totally real      365.M
Submanifold totally umbilical      365.D
Submartingale      262.A
Submedian      193.T
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте