Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Uniformly continuous on a subset      436.G
Uniformly convergent (sequence)      435.A
Uniformly convergent in the wider sense      435.C
Uniformly convergent on a family of sets      435.C
Uniformly convex (normed linear space)      37.G
Uniformly equivalent (uniform spaces)      436.E
Uniformly integrable (family of random variables)      262.A
Uniformly locally compact (space)      425.V
Uniformly Lyapunov stable      126.F
Uniformly minimum variance unbiased      399.C
Uniformly minimum variance unbiased estimator      399.C
Uniformly most powerful (confidence region)      399.Q
Uniformly most powerful (test)      400.A
Uniformly most powerful invariant      399.Q
Uniformly most powerful invariant level $\alpha$      400.E
Uniformly most powerful unbiased      399.Q
Uniformly most powerful unbiased level $\alpha$      400.E
Uniformly recursive in $\Psi$ (define a partial recursive function)      356.E
Uniformly smooth (normed linear space)      37.G
Uniformly stable      394.B
Unilateral constraints      440.A
Unilateral shift operator      390.I
Unimodal (distribution function)      341.H
Unimodular (germ of an analytic function)      418.E
Unimodular (locally compact group)      225.D
Unimodular group      60.B
Unimodular group quaternion      412.G
Unimodular totally      186.G
Union (in axiomatic set theory)      33.B
Union (of matroids)      66.H
Union (of sets)      381.B
Union disjoint      381.B 381.D
Union of hypersurface elements      82.A
Union of surface elements      324.B
Union, axiom of      381.G
Unipotent (algebraic group)      13.E
Unipotent (linear transformation)      269.L
Unipotent component      269.L
Unipotent matrix      269.F
Unipotent part (of a nonsingular matrix)      13.E
Unipotent part (of an algebraic group)      13.E
Unipotent radical      13.I
Unique continuation theorem      323.J
Unique decomposition theorem (for a 3-manifold)      65.E
Unique factorization domain      67.H
Unique factorization theorem (in an integral domain)      67.H
Unique strong solution      406.D
Uniquely ergodic (homeomorphism (on a compact metric space)      136.H
Uniqueness condition (for solutions of ordinary differential equations)      316.D
Uniqueness in the sense of law of solutions      406.D
Uniqueness of solution, pathwise      406.D
Uniqueness principle (in potential theory)      338.M
Uniqueness set of      159.J
Uniqueness theorem (for an initial value problem of ordinary differential equations)      316.D
Uniqueness theorem (for analytic functions)      198.C
Uniqueness theorem (for class field theory)      59.B
Uniqueness theorem (for differential equations in a complex domain)      316.G
Uniqueness theorem (for Fourier transform)      192.I
Uniqueness theorem (for harmonic functions)      193.E
Uniqueness theorem Holmgren      321.F
Uniqueness theorem of homology theory      201.R
Uniqueness theorem of the analytic continuation      198.C 198.I
Uniqueness theorem Rellich      188.D
Uniqueness theorem von Neumann      351.C
Unirational surface      15.H
Unirational variety      16.J
Uniserial algebra      29.I
Uniserial algebra absolutely      29.I
Uniserial algebra generalized      29.I
Unisolvent space      142.B
Unisolvent system (of functions)      336.B
Unit ball (of a Banach space)      37.B
Unit ball (of a Euclidean space)      140
Unit cell      140
Unit circle      74.C 140
Unit cost      281.D
Unit cube      139.F 140
Unit disk      140
Unit distribution      341.D
Unit element (of a field)      149.A
Unit element (of a group)      190.A
Unit element (of a ring)      368.A
Unit function      306.B App. Table
Unit group (of an algebraic number field)      14.D
Unit impulsive function      App. A Table
Unit mapping      203.F
Unit matrix      269.A
Unit n-cube      140
Unit point (of a projective frame)      343.C
Unit point (of an affine frame)      7.C
Unit ray      351.B
Unit representation (of a group)      362.C
Unit sphere      140
Unit tangent sphere bundle      126.L
Unit theorem, Dirichlet      14.D
Unit vector      7.C 442.B
Unit(s) (for measure of length)      139.C
Unit(s) (in a ring)      368.B
Unit(s) (of a symmetric matrix with rational coordinates)      348.J
Unit(s) (of a vector lattice)      310.B
Unit(s) (of an algebraic number field)      14.D
Unit(s) Archimedean (of a vector lattice)      310.B
Unit(s) arithmetic      75.B
Unit(s) auxiliary      414.A
Unit(s) base      414.A
Unit(s) circular      14.L
Unit(s) control      75.B
Unit(s) derived      414.D
Unit(s) fundamental      414.A
Unit(s) fundamental (of an algebraic number field)      14.D
Unit(s) gravitational, system of      414.B
Unit(s) imaginary      74.A 294.F
Unit(s) Kakutani      310.G
Unit(s) matrix      269.B
Unit(s) memory      75.B
Unit(s), international system of      414.A
Unit(s), system of      414
Unital      36.A
Unitarily equivalent (self-adjoint operators)      390.G
Unitary (homomorphism between rings)      368.D
Unitary (module)      277.D
Unitary algebra      29.A
Unitary dilation      251.M
Unitary essentially      390.I
Unitary field theory      434.C
Unitary group      60.F 151.I
Unitary group (relative to an $\varepsilon$-Hermitian form)      60.O
Unitary group infinite      202.V
Unitary group over K      60.H
Unitary group over K, projective special      60.H
Unitary group over K, special      60.H
Unitary group projective      60.F
Unitary group special      60.F
Unitary group special (relative to an $\varepsilon$-Hermitian form)      60.O
Unitary matrix      269.I
Unitary monoid      409.C
Unitary operator      251.E 390.E
Unitary representation(s)      437
Unitary representation(s) disjoint      437.C
Unitary representation(s) equivalent      437.A
Unitary representation(s) induced by a representation of a subgroup      437.O
Unitary representation(s) integrable      437.X
Unitary representation(s) irreducible      437.A
Unitary representation(s) isomorphic      437.A
Unitary representation(s) quasi-equivalent      437.C
Unitary representation(s) similar      437.A
Unitary representation(s) square integrable      437.M
Unitary representation(s) sufficiently many irreducible      437.B
Unitary restriction (of a semisimple Lie algebra)      248.P
Unitary ring      368.A 409.C
Unitary semigroup      409.C
Unitary symplectic group      60.L
Unitary transformation      348.F
Unitary transformation (relative to an $\varepsilon$-Hermitian form)      60.O
Unitary transformation group      60.F
Unity (in the axioms for the real numbers)      355.A
Unity element (of a field)      149.A
Unity element (of a ring)      368.A
Unity partition of, of class $C^\infty$      105.S
Unity partition of, subordinate to a covering      425.R
Unity, partition of      425.R
Unity, primitive root of      14.L
Univalence superselection rule      351.K
Univalent (analytic function)      438.A
Univalent correspondence      358.B
Univalent function      438
Univariate (statistical data)      397.A
Universal ($\partial$-functor)      200.I
Universal (*-representation of a Banach *-algebra)      36.G
Universal (unfolding)      51.D
Universal bundle      147.G 147.H
Universal bundle n-      147.G
Universal Chern class      56.C
Universal coefficient theorem (for cohomology)      200.G 201.H
Universal coefficient theorem (in Abelian categories)      200.H
Universal coefficient theorem for homology      200.D 201.G
Universal constants (in the theory of conformal mapping)      77.F
Universal covering group      91.B 423.O
Universal covering space      91.B
Universal covering surface      367.B
Universal curve      93.H
Universal domain      16.A
Universal enveloping algebra (of a Lie algebra)      248.J
Universal enveloping algebra special (of a Jordan algebra)      231.C
Universal enveloping bialgebra      203.G
Universal Euler — Poincare class      56.B
Universal gravitation, law of      271.B
Universal mapping property      52.L
Universal net (in a set)      87.H
Universal Pontryagin class      56.D
Universal proposition      411.B
Universal quantifier      411.C
Universal set (for the projective sets of class n)      22.E
Universal set (in set theory)      381.B
Universal Stiefel — Whitney class      56.B
Universal Teichmueller space      416
Universal Turing machine      31.C
Universal unfolding      418.E
Universal validity of a proposition, problem of      97
Universally Japanese ring      16.Y 284.F
Universally measurable      270.L
Universe (in nonstandard analysis)      293.B
Universe (of a structure)      276.B
Unknotted (ball pair)      65.D 235.G
Unknotted (knot)      235.A
Unknotted (sphere pair)      65.D 235.G
Unknotting conjecture      235.G
Unknotting theorem, Zeeman      65.D
Unlabeled graph      186.B
Unmixed ideal      284.D
Unmixedness theorem      284.D
Uno, Toshio(1902-)      NTR
Unordered pair      381.B
Unordered pair (in axiomatic set theory)      33.B
Unordered pair, axiom of      33.B
Unoriented cobordism class      114.H
Unoriented cobordism group      114.H
Unoriented graph      186.H
Unramified (covering surface)      367.B
Unramified (prime ideal)      14.I
Unramified (projection of a covering surface)      367.B
Unramified analytically (semilocal ring)      284.D
Unramified covering (of a nonsingular curve)      9.I
Unramified extension      14.I 257.D
Unrenormalizable      132.C 361.B
Unsolvability, degree of      97
Unsolvability, recursive, arithmetical hierarchy of degrees of      356.H
Unsolvability, recursive, degree of      97
Unsolvability, recursive, hyperarithmetical hierarchy of degrees of      356.H
Unstable (boundary component)      77.E
Unstable (state)      394.A
Unstable completely (flow)      126.E
Unstable manifold      126.G 126.J
Unstable solution (of Hill’s equation)      264.E
Up-ladder      206.B
Upper bound (of a subset in an ordered set)      311.B
Upper bound least (of a subset of a vector lattice)      310.C
Upper bound least (of an ordered set)      311.B
Upper boundedness principle (in potential theory)      338.C
Upper central series (of a group)      190.J
Upper class with respect to local continuity      45.F
Upper class with respect to uniform continuity      45.F
Upper control limit      404.B
Upper derivative general (of a set function)      380.D
Upper derivative ordinary (of a set function)      380.D
Upper end (of a curvilinear integral)      94.D
Upper envelope (of a family of subharmonic functions)      193.R
Upper half-space of degree n, Siegel      32.F
Upper integral, Riemann      216.A
Upper limit (of a Riemann integral)      216.A
Upper limit function      84.C
Upper semicontinuous (at a point)      84.C
Upper semicontinuous (partition)      425.L
Upper semicontinuous in a set      84.C
Upper semilattice      243.A
Upper triangular matrix      269.B
Upper variation (of a set function)      380.B
Ura,Taro(1920-)      126.D 126.F
Urabe, Minora(1912-75)      301.D
Urakawa, Hajime(1946-)      391.E
Ural’tseva, Nina Nikolaevna      286.r 323.D
Urbanik, Kazimierz(1930-)      407.C
Ursell, Harold Douglas      246.r
Uryson lemma      425.Q
Uryson space, Frechet —      425.CC
Uryson theorem, Tikhonov —      425.Q
Uryson — Tikhonov theorem (on metrizability)      273.K
Uryson, Pavel Samuilovich(1898-1924)      22.I 93.D 117.A 117.r 273.K 425.Q 425.S 425.U 425.V 425.CC
Ushiki, Shigehiro(1950-)      126.N
Ushio, Kazuhiko(1946-)      96.r
Utida, Itumi(1805-1882)      230
Utida,Shunro(1913-)      263.A
Uzawa gradient method, Arrow — Hurwicz —      292.E
Uzawa, Hirofumi(1928-)      292.A 292.E 292.r
v-curve      111.H
V.W.B. process      136.E
Vacuum vector      377.A
Vacuum vector free      150C
Vaeisaelae, Juessi      143.r 352.F
Vague topology (on a class of measures)      338.E
Vahlen, Karl Theodor(1869-1945)      83.B
Vaillancourt, Remi(1934-)      304.F 345.A
Vajda, Steven      408.r
Valentine, F.A.      88.r
Valid formula      411.G
Valiron, Georges(1884-1954)      17.A 17.C 17.D 43.K 121.B 121.C 121.r 124.B 272.F 272.K 429.B 435.r
Valnberg, Boris Rufimovich(1938-)      323.K
Valnshtein, Isaak Aronovich      273.K
Valuation ideal (of a valuation)      439.B
Valuation ring      439.B
Valuation ring discrete      439.E
Valuation ring, completion of      439.D
Valuation vector(s)      6.C
Valuation vector(s), ring of      6.C
Valuation(s)      439
Valuation(s) $\mathfrak{p}$-adic      439.F
Valuation(s) $\mathfrak{p}$-adic exponential      439.F
Valuation(s) additive      439.B
Valuation(s) Archimedean      14.F 439.C
Valuation(s) complete      439.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте