|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
Предметный указатель |
Young, Thomas(1773-1829) 271.G
Young, William Henry(1863-1942) 106.H 159.J 224.E 317.B App.A Table
Youngs, J.W.T. 157.E
Yourden square 102.K
Yourden square design 102.K
Yukawa potential 338.M
Yukawa, Hideki(1907-1981) 132.A 150.A 338.M
Yule — Walker equation 421.D
Yule, George Udny(1871-1951) 421.D
Yuzvinskil, Sergei Aronovich(1936-) 136.r
Yvon, Jacques(1903 -) 402.J
Z (Zermelo set theory) 33.B
z-distribution 374.B App. Table
z-plane 74.D
Z-set 382.B
z-sphere 74.D
z-transformation, Fisher 374.D
Zabrelko, Petr Petrovich(1939-) 251.r
Zabusky, Norman J.(1929-) 387.B
Zacks, Shelemyahu(1932-) 399.H
Zagier, Don 15.H 72.r 450.T
Zak, F.L. 16.I
Zakharov, V.E. 80.r 387.F 387.G
Zaleman, Lawrence 169.r
Zamansky, Marc(1916-) 336.D
Zaremba, Stanistaw(1863-1942) 120.B
Zaring, Wilson B. 33.r
Zariski closed (set) 16.A
Zariski connectedness theorem 16.X
Zariski decomposition 15.D
Zariski dense (set) 16.A
Zariski main theorem 16.I
Zariski open (set) 16.A
Zariski ring 284.C
Zariski ring complete 284.C
Zariski site 16.AA
Zariski topology (of a spectrum) 16.D
Zariski topology (of a variety) 16.A
Zariski, Oscar(1899-1986) 12.B 12.r 15.B 15.D 15.E 15.H 15.r 16.A 16.I 16.J 16.L 16.X 16.r 67.r 284.C 284.D 284.G 284.r 370.r 418.r 439.r
Zarnke, Charles Robert 123.C
Zassenhaus group 151.H
Zassenhaus theorem Jordan — (on integral representation of a group) 362.K
Zassenhaus theorem Schur — (on Hall subgroups) 151.E
Zassenhaus, Hans J.(1912-) 92.A 92.F 151.E 151.H 151.J 151.r 190.r 362.K
Zeeman unknotting theorem 65.D
Zeeman, Erik Christopher(1925-) 51.A 51.r 65.A 65.C 65.D 65.r 235.G 426
Zegalov see Zhegalov
Zeigler, Bernard P. 385.r
Zeller theorem, Brown — Shields — 43.C
Zeller, Karl(1924-) 43.G 58.r 379.r
Zeller-Meier, Georges 308.F
Zemansky, Mark Waldo(1900-) 419.r
Zener, Clarence(1905-) 264.r
Zenith angle App. A Table
Zeno(c.490-c.430 B.C.) 187 319.C
Zeno, paradoxes of 319.C
Zenor, Phillip L. 273.K
Zermelo set theory 33.B
Zermelo — Fraenkel set theory 33.A 33.B
Zermelo, Ernst Friedrich Ferdinand(1871-1953) 33.A 33.B 33.r 34.B 34.r 41.A 381.F 381.G 381.r
Zerna, Wolfgang(1916-) 271.r
Zero algebra 29.A
Zero cycles 16.R
Zero divisor (of a function on an algebraic variety) 16.M
Zero divisor (of a ring) 368.B
Zero divisor (with respect to M/P) 284.A
Zero element (of a field) 149.A
Zero element (of a linear space) 256.A
Zero element (of a ring) 368.A
Zero element (of an additive group) 2.E 190.A
Zero homomorphism (between two A-modules) 277.H
Zero matrix 269.B
Zero object 52.N
Zero point (of a holomorphic function) 198.C
Zero point (of a polynomial) 337.B 369.C
Zero point (of a subset of a polynomial ring) 369.C
Zero point of the -kth order (of a complex function) 198.D
Zero point of the kth order (of a holomorphic function) 198.C
| Zero point, order of (of a homomorphic function) 198.C
Zero representation (of an algebra) 362.C
Zero ring 368.A
Zero vector 442.A
Zero(s) 355.A
Zero(s) (of a function on an algebraic curve) 9.C
Zero(s) (of a function on an algebraic variety) 16.M
Zero(s) scattered, function with 208.C
Zero(s), homologous to 198.B
Zero(s), homotopic to 202.B
Zero-dimensional space, Baire 273.B
Zero-one law 342.G
Zero-one law Blumenthal 261.B
Zero-one law Hewitt — Savage 342.G
Zero-one law Kolmogorov 342.G
Zero-point theorem Hilbert 369.D
Zero-point theorem Rueckert 23.B
Zero-section (of a block bundle) 147.Q
Zero-sum (game) 173.A
Zero-sum two-person game 108.B
Zeroth law of thermodynamics 419.A
Zeta function(s) 450
Zeta function(s) (associated with a prehomogeneous space) 450.V
Zeta function(s) (of a homeomorphism of a compact metric space) 126.K
Zeta function(s) congruence 450.P
Zeta function(s) Dedekind 14.C 450.D
Zeta function(s) defined by Hecke operators 450.M
Zeta function(s) Epstein 450.K
Zeta function(s) Hasse 450.S
Zeta function(s) Hey 27.F
Zeta function(s) Hurwitz 450.B
Zeta function(s) Ihara 450.U
Zeta function(s) of a scheme 450.R
Zeta function(s) of a simple algebra 27.F
Zeta function(s) of an algebraic function field 450.P
Zeta function(s) of an algebraic variety over a finite field 450.Q
Zeta function(s) Riemann 450.B
Zeta function(s) Selberg 450.T
Zeta function(s) Siegel, of indefinite quadratic forms 450.K
Zeta function(s) Tamagawa 450. L
Zeta function(s) Weierstrass 134.F App. Table
ZF (Zermelo — Fraenkel set theory) 33.B
ZFC 33.B
Zhang Qiujian(c.5th century) 57.A
Zhegalov, Valentin Ivanovich 326.r
Zhelobenko, Dmitrii Petrovich(1934-) 437.EE 437.r
Zia-ud-Din, M. App.B Table
Ziemer, William P.(1934-) 246.J
Zilber theorem, Eilenberg — 201.J
Zilber, Joseph Abraham(1923-) 70.E 201.J
Ziller, Wolfgang(1952-) 279.G 364.r
Zimmermann, Wolfhart(1928-) 146.A 150.D
Zippin, Leo(1905-) 2.D 196 249.V 249.r 423.N 431.r
Zobin, N.M. 424.S
Zoll, Otto 178.G
Zonal harmonics 393.D
Zonal polynomial 374.C
Zonal spherical function (on a homogeneous space) 437.Y
Zoretti, M. Ludovic 79.D
Zorn Lemma 34.C
Zorn, Max A.(1906-) 34.C 34.r 54.r 450.L
Zoutendijk, Guus(1929-) 292.E
Zsido, Laszlo(1946-) 308.r
Zuckerman, Herbert Samuel(1912-1970) 118.r 192.P
Zumino, Bruno(1923-) 150.D 386.B
Zurmuhl, Rudolf(1904-) 298.r
Zuse, Konrad(1910-) 75.A
Zverkin, Aleksandr Mikhailovich(1927-) 163.r
Zvyagin, V.G. 286.r
Zwinggi, Ernst(1905-) 214.r
Zygmund class 159.E
Zygmund singular integral operator, Calderon — 251O
Zygmund type, kernal of Calderon 217.J
Zygmund, Antoni(1902-) 136.B 159.E 159.G 159.r 168.B 168.r 192.r 198.r 217.J 217.r 224.r 251.O 274.B 274.I 336.C 336.r
Zygmund, smooth in the sense of 168.B
Zykov, Aleksandr Aleksandrovich(1922-) 186.r
{}-consistency, {}-consistent 399.K
{R,S)-projective module 200.K
’t Hooft, Gerald 132.C 132.D
|
|
|
Реклама |
|
|
|