Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Representation(s) double-valued      258.B
Representation(s) dual      362.E
Representation(s) equivalent      362.C
Representation(s) factor (of a topological group)      437.E
Representation(s) factor, of type I, II, or III      308.M 437.E
Representation(s) faithful      362.B
Representation(s) Fock      150.C
Representation(s) Gel’fand (of a commutative Banach algebra)      36.E
Representation(s) generalized canonical (of Gaussian processes)      176.E
Representation(s) generating (of a compact Lie group)      249.U
Representation(s) half-spin (even, odd)      61.E
Representation(s) Herglotz’s integral      43.I
Representation(s) in terms of arc length (of a continuous arc)      246.A
Representation(s) induced      362.G
Representation(s) induced (of a finite group)      362.G
Representation(s) induced (of a unitary representation of a subgroup)      437.O
Representation(s) integral (of a group)      362.G 362.K
Representation(s) integral, Cauchy’s      21.C
Representation(s) irreducible (of a Banach algebra)      36.D
Representation(s) irreducible (of an algebra or a group)      362.C
Representation(s) irreducible projective      362.J
Representation(s) isomorphic      362.C
Representation(s) isotropy      431.C
Representation(s) Kaellen — Lehmann      150.D
Representation(s) kernel (of a Green’s operator)      189.B
Representation(s) l-adic      3.E
Representation(s) Lax      287.B 287.C 387.C
Representation(s) left regular (of a group)      362.B
Representation(s) list      186.D
Representation(s) Mandelstam      132.C
Representation(s) matrix      362.D
Representation(s) modular (of a finite group)      362.G
Representation(s) momentum      351.C
Representation(s) normal (of a von Neumann algebra)      308.C
Representation(s) ordinary (of a finite group)      362.G
Representation(s) parametric      165.C
Representation(s) parametric (of a subspace of an affine space)      7.C
Representation(s) parametric (of Feynman integrals)      146.B
Representation(s) permutation (of a group)      362.B
Representation(s) permutation, reciprocal (of a group)      362.B
Representation(s) polynomial (of GL(V))      60.D
Representation(s) position      351.C
Representation(s) projective (of a group)      362.J
Representation(s) projective, irreducible      362.J
Representation(s) quotient (of a linear representation)      362.C
Representation(s) rational (of a matrix group)      226.B
Representation(s) rational (of GL(V))      60.D
Representation(s) real (of a Lie group)      349.O
Representation(s) reciprocal linear (of an algebra)      362.C
Representation(s) reciprocal permutation (of a group)      362.B
Representation(s) reduced (of an algebra)      362.E
Representation(s) reducible      362.C
Representation(s) regular (of a locally compact group)      69.B
Representation(s) regular (of a topological transformation group)      437.A
Representation(s) regular, left (of a group)      362.B
Representation(s) regular, left (of an algebra)      362.C
Representation(s) regular, right (of a group)      362.B
Representation(s) regular, right (of an algebra)      362.E
Representation(s) Schroedinger      351.C
Representation(s) semisimple      362.C
Representation(s) similar      362.C
Representation(s) similar matrix (semilinear mapping)      256.D
Representation(s) similar projective      362.J
Representation(s) simple      362.C
Representation(s) slice      431.C
Representation(s) special (of a Jordan algebra)      231.C
Representation(s) spectral      390.E
Representation(s) spherical (of a differentiable manifold)      111.G
Representation(s) spherical (of a space curve)      111.F
Representation(s) spherical (of a unimodular locally compact group)      437.Z
Representation(s) spin      61.E
Representation(s) spin (of SO(n))      60.J
Representation(s) spinor, of rank      258.B
Representation(s) strongly continuous (of a topological group)      69.B
Representation(s) sub-      362.C
Representation(s) sub- (of a projective representation)      362.J
Representation(s) tensor (of a general linear group)      256.M
Representation(s) translation, theorem      375.H
Representation(s) transposed      362.E
Representation(s) tree      96.D
Representation(s) unit (of a group)      362.C
Representation(s) vector (of a Clifford group)      61.D
Representation(s) weakly continuous (of a topological group)      69.B
Representation(s) without multiplicity      437.G
Representation(s) zero (of an algebra)      362.C
Representation(s), module of      69.D
Representation(s), tensor product of      362.C
Representative (of an equivalence class)      135.B
Representative function (of a compact Lie group)      249.U
Representative ring (of a compact Lie group)      249.U
Representing function (of a predicate)      356.B
Representing function (of a subset)      381.C
Representing measure      164.C
Reproducing kernel      188.G
Reproducing property (of a probability distribution)      341.E App. Table
Reproduction function      263.A
Requirements, variational principles with relaxed continuity      271.G
Reseboom, J.H.      376.r
Reserve, liability      214.B
Residual (subset of a directed set)      311.D
Residual limit set      234.E
Residual set      126.H 425.N
Residual spectrum      390.A
Residue (class) algebra      29.A
Residue (class) field      149.C 368.F 439.B
Residue (class) ring (modulo an ideal)      368.F
Residue character      295.D
Residue class (modulo an ideal in a ring)      368.F
Residue system modulo m complete      297.G
Residue system modulo m reduced      297.G
Residue theorem      198.E
Residue theorem (on a nonsingular curve)      9.E
Residue(s) (of a complex function)      198.E
Residue(s) norm- (modulo $\mathfrak{p}$)      14.P
Residue(s) norm- (symbol)      14.Q 257.F
Residue(s) of the nth power (modulo $\mathfrak{p}$)      14.M
Residue(s) power- (symbol)      14.N
Residue(s) quadratic      297.H
Residue(s), calculus of      198.F
Resistance, negative      318.B
Resistance, specific      130.B
Resnikoff, George Joseph(1915 )      STR
Resolution      200.H
Resolution 2l      102.I
Resolution 2l+1      102.I
Resolution complete free (of Z)      200.N
Resolution complex spectral      390.E
Resolution flabby      125.W
Resolution injective (in an Abelian category)      200.I
Resolution of singularities      16.L
Resolution of singularities (of an analytic space)      23.D 418.B
Resolution of the identity      390.D
Resolution right (of an A-module)      200.F
Resolution right injective (of an A-module)      200.F
Resolution spectral      390.E
Resolution standard (of Z)      200.M
Resolutionminimal      418.C
Resolutionprojective (in an Abelian category)      200.I
Resolutive      207.B
Resolutive compactification      207.B
Resolvent (of a kernel)      217.D
Resolvent (of a linear operator)      251.F
Resolvent (operator of a Markov process)      261.D
Resolvent convergence norm      331.C
Resolvent convergence strong      331.C
Resolvent cubic      App. A Table
Resolvent equation      251.F
Resolvent set (of a linear operator)      251.F 390.A
Resonance model, dual      132.C
Resonance pole      331.F
Resonance theorem      37.H
Response      405.A
Response surface      102.M
Response surface designs for exploring      102.M
Rest energy      359.C
Rest point (of a trajectory)      126.D
Restitutive force      318.B
Restricted (Lorentz group)      258.A
Restricted Burnside problem (in group theory)      161.C
Restricted differential system      191.I
Restricted direct product      6.B
Restricted direct product (of an infinite number of groups)      190.L
Restricted direct product (of locally compact groups)      6.B
Restricted holonomy group      80.D 364.E
Restricted homogeneous holonomy group      364.E
Restricted homotopy      202.B
Restricted Lie algebra      248.V
Restricted minimal condition (in a commutative ring)      284.A
Restricted quantifier      33.B
Restricted three-body problem      420.F
Restriction (in a presheaf)      383.A
Restriction (of a connection)      80.F
Restriction (of a continuous flow)      126.D
Restriction (of a distribution)      125.D
Restriction (of a mapping)      381.C
Restriction crystallographic      92.A
Restriction scalar (of a B-module)      277.L
Restriction unitary (of a semisimple Lie algebra)      248.P
Resultant(s)      369.E
Resultant(s) system of      369.E
Retardation      163.A
Retarded differential equation      163.A
Retarded type (functional differential equation)      163.A
retract      202.D
Retract absolute      202.D
Retract absolute neighborhood      202.D
Retract deformation      202.D
Retract fundamental      382.C
Retract fundamental absolute (FAR)      382.C
Retract fundamental absolute neighborhood (FANR)      382.C
Retract neighborhood      202.D
Retract neighborhood deformation      202.D
Retract strong deformation      202.D
Retraction      202.D
Retrieval, information (system)      96.F
Retrospective study      40.E
RETURN      127.C
Return maximum      127.B
Returnfirst- (mapping, map)      126.C
Reuleaux triangle      89.E 111.E
Reuleaux, Franz(1829-1905)      89.E 111.E
Reversal, time      258.A
Reversed process      261.F
Review technique, program evaluation and      376
Revolution, ellipsoid of      350.B
Revolution, elliptic paraboloid of      350.B
Revolution, hyperboloid of, of one sheet      350.B
Revolution, hyperboloid of, of two sheets      350.B
Revolution, surface of      111.I
Revuz, Daniel Robert(1936-)      260.J 261.E
Reynolds law of similarity      205.C
Reynolds number      116.B 205.C
Reynolds number, magnetic      259
Reynolds, Osborne(1842-1912)      116.B 205.C 259
Rhaeticus, Georg Joachim(1514-1574)      432.C
Rheinboldt, Werner Carl(1927-)      301.r
Rhodes, John L.(1937-)      31.r
Ribenboim, Paulo(1928-)      145.r
Ribet, Kenneth A.      14.L 450.J 450.r
Riccati differential equation      App. A Table
Riccati differential equation generalized      App. A Table
Riccati differential equation matrix      86.E
Riccati equation, matrix      405.G
Riccati, Jacopo Francesco(1676-1754)      86.E 107.A 405.G App.A Table
Ricci curvature      364.D
Ricci equation      365.C
Ricci formula      417.B App. Table
Ricci tensor      364.D 417.B App. Table
Ricci, Curbastro Gregorio(1853-1925)      109 364.D 365.C 417.B 417.F App.A Table
Ricci, Matteo(1552-1610)      57.C
Rice, John Richard(1934-)      299.r 336.r
Richard paradox      319.B
Richard, Jules Antoine(1862-1956)      319.B
Richardson method      302.C
Richardson, C H.      104.r
Richardson, Lewis Fry(1881-1953)      302.C 304.E
Richardson, Roger Wolcott Jr.(1930-)      431.r
Richert, Hans-Egon(1924-)      4.C 123.D 123.E 123.r
Richter, Hans(1912-1978)      443.A
Richter, Wayne H.(1936-)      81.D 81.r
Richtmyer, Robert Davis(1910 )      304.r
Rickart, Charles Earl(1913-)      36.r 231.r 443.A
Rickman, Seppo U.(1935-)      352.F
Rieffel, Marc A.(1937-)      308.H 443.H
Riemann $\Theta$ function      3.L
Riemann $\zeta$ function      450.V
Riemann (differential) equation, Cauchy (for a holomorphic function of several complex variables)      21.C
Riemann (differential) equation, Cauchy (for a holomorphic function of two complex variables)      320.F
Riemann (differential) equation, Cauchy —      198.A 274.G
Riemann bilinear relations, Hodge —      16.V
Riemann continuation theorem      21.F
Riemann differential equation      App. A. Table 18.I
Riemann function (of a Cauchy problem)      325.D
Riemann hypothesis      450.A 450.I 450.P 450.Q
Riemann integrable (function)      216.A
Riemann integral      37.K 216.A
Riemann lower integral      216.A
Riemann mapping theorem      77.B
Riemann matrix      3.I
Riemann method of summation      379.S
Riemann non-Euclidean geometry      285.A
Riemann P-function      App. A Tables 18.I
Riemann period inequality      3.L
Riemann period relation      3.L
Riemann problem      253.D
Riemann sphere      74.D
Riemann structure, Cauchy —      344.A
Riemann sum      216.A
Riemann surface(s)      367
Riemann surface(s) abstract      367.A
Riemann surface(s) closed      367.A
Riemann surface(s) elliptic      367.D
Riemann surface(s) hyperbolic      367.D
Riemann surface(s) maximal      367.F
Riemann surface(s) open      367.A
Riemann surface(s) open, of null boundary      367.E
Riemann surface(s) open, of positive boundary      367.E
Riemann surface(s) parabolic      367.D
Riemann surface(s) prolongable      367.F
Riemann surface(s), classification theory of      367.E
Riemann theorem (on removable singularities)      198.D
Riemann theorem (on series with real terms)      379.C
Riemann upper integral      216.A
Riemann — Hilbert problem (for integral equations)      217.J
Riemann — Hilbert problem (for linear ordinary differential equations)      253.D
Riemann — Hurwitz formula (on coverings of a nonsingular curve)      9.I
Riemann — Hurwitz relation      367.B
Riemann — Lebesgue theorem      159.A 160.A
Riemann — Roch group      366.D
Riemann — Roch inequality (on algebraic surfaces)      15.D
Riemann — Roch theorem(s)      366
Riemann — Roch theorem(s) (for compact complex surface)      366.C
Riemann — Roch theorem(s) (on algebraic surfaces)      15.D
Riemann — Roch theorem(s) (on nonsingular algebraic curves)      9.C
Riemann — Roch theorem(s) (on Riemann surfaces)      11.D
Riemann — Roch theorem(s) for a line bundle      366.C
Riemann — Roch theorem(s) for an adjoint system      15.D
Riemann — Roch theorem(s) for differentiable manifolds      237.G
Riemann — Roch theorem(s) generalized (on algebraic curves)      9.F
Riemann — Roch type, Grothendieck theorem of      366.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте