Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Projection matrix      269.I
Projection method of orthogonal (of H. Weyl)      323.G
Projection method, Rosen’s gradient      292.E
Projection operator (in a Hilbert space)      197.E
Projection orthogonal      139.E 139.G
Projection orthogonal (on a Hilbert space)      197.E
Projection parallel (in an affine space)      7.C
Projection regular knot      235.A
Projection relaxation with      440.E
Projection stereographic      74.D
Projection unramified (of a covering surface)      367.B
Projective $C*$-tensor product      36.H
Projective (Banach space)      37.M
Projective (object in an Abelian category)      200.I
Projective (object)      200.I
Projective A-module      277.K
Projective algebraic variety      16.A
Projective algebraic variety quasi-      16.C
Projective algebraic variety, fundamental theorems of      72.F
Projective approximation method      304.B
Projective class      200.Q
Projective class group      200.K
Projective collineation      343.D
Projective collineation in the wider sense      343.D
Projective connection      80.O
Projective coordinate system      343.C
Projective coordinates      343.C
Projective curvature tensor      App. A Table
Projective deformation (between surfaces)      110.B
Projective determinacy      22.H
Projective differential geometry      110.B
Projective dimension (of a module)      200.K
Projective frame (in projective geometry)      343.C
Projective general linear group      60.B
Projective general linear group of degree n over K      60.B
Projective geometry      343
Projective geometry finite-dimensional      343.B
Projective geometry general      343.B
Projective geometry of paths      109
Projective geometry, fundamental theorem of      343.D
Projective limit (in a category)      210.D
Projective limit (of a projective system of sets)      210.B
Projective limit (of a projective system of topological groups)      423.K
Projective limit group      210.C
Projective limit space      210.C
Projective line      343.B
Projective line element      110.B
Projective mapping (in projective geometry)      343.B
Projective module, (R, S)-      200.K
Projective morphism      16.E
Projective morphism quasi-      16.E
Projective plan Cayley      54
Projective plan finite      241.B
Projective plane      343.B
Projective representation (of a group)      362.J
Projective representation irreducible      362.J
Projective representation similar      362.J
Projective resolution $\mathfrak{B}$-      200.Q
Projective resolution (in an Abelian category)      200.I
Projective resolution left (of an A-module)      200.C
Projective scheme      16.E
Projective scheme quasi-      16.E
Projective set of class n      22.D
Projective space      343.B
Projective space complex      343.D
Projective space infinite-dimensional complex      56.C
Projective space infinite-dimensional real      56.B
Projective space left      343.F
Projective space over $\Lambda$      147.E
Projective space real      343.D
Projective space right      343.F
Projective special linear group      60.B
Projective special linear group (over a noncommutative field)      60.O
Projective special unitary group over K      60.H
Projective symplectic group over K      60.L
Projective system (in a category)      210.D
Projective system (of groups)      210.C
Projective system (of sets)      210.B
Projective system (of toplogical spaces)      210.C
Projective system (of topological groups)      423.K
Projective topology      424.R
Projective transformation      343.D 364.F
Projective transformation group      343.D
Projective transformation regular      343.D
Projective transformation singular      343.D
Projective transformation singular, of the kth species      343.D
Projective transformation, group of      343.D
Projective unitary group      60.F
Projective variety      16.A
Projectively flat space      App. A Table
Projectively related (fundamental figures)      343.B
Prokhorov, Yurii Vasil’evich(1929-)      115.D 250.E 250.r 341.F 341.r 374.r
Prolate      App. A Table
Proliferation (of errors)      138.D
Prolongable (Riemann surface)      367.F
Prolongation (along a curve in a covering surface)      367.B
Prolongation (of a Riemann surface)      367.F
Prolongation (of a solution of an ordinary differential equation)      316.C
Prolongation (of a system of partial differential equations)      428.B 428.F
Prolongation (of a valuation)      439.B
Prolongation analytic      198.G
Prolongation first (of P)      191.E
Prolongation kth (of a Lie subalgebra)      191.D
Prolongation kth (of P)      191.E
Prolongation kth(of G)      191.D
Prolongational limit set first negative      126.D
Prolongational limit set first positive      126.D
Proof theory      156.D
Proof, consistency      156.D
Proof, consistency for pure number theory      156.E
Propagation equation of sound      325.A
Propagation of chaos      340.F
Propagation of errors      138.C
Propagation of singularities      325.M
Propagation wave      446
Proper (continuous mapping)      425.W
Proper (equivalence relation in an analytic space)      23.E
Proper (leaf)      154.D
Proper (Lorentz group)      258.A
Proper (morphism of scheme)      16.D
Proper (PL embedding)      65.D
Proper affine transformation      7.E
Proper class (in set theory)      381.G
Proper complex Lorentz group      258.A
Proper component (of an intersection of subvarieties)      16.G
Proper convex function      88.D
Proper factor (of an element of a ring)      67.H
Proper flag manifold      199.B
Proper function (of a boundary value problem)      315.B
Proper hypersphere (in hyperbolic geometry)      285.C
Proper Lorentz group      60.J
Proper mapping(s)      425.W
Proper mapping(s), fundamental theorem of      16.X
Proper meromorphic mapping (between analytic spaces)      23.D
Proper modification (of an analytic space)      23.D
Proper motion in Euclidean geometry      139.B
Proper motion of a star      392
Proper orthogonal group      60.I 258.A
Proper orthogonal matrix      269.J
Proper product (of two normal g-lattices)      27.A
Proper quadric surface      350.B
Proper rotation group      258.A
Proper subset      381.A
Proper time      258.A
Proper transform (of a subvariety)      16.I
Proper value (of a boundary value problem)      315.B
Proper value (of a linear mapping)      269.L
Proper value (of a linear operator)      390.A
Proper value (of a matrix)      269.F
Proper variation      279.F
Proper vector (belonging to an eigenvalue)      269.F
Proper vector (of a linear operator)      390.A
Proper vector (of a linear transformation)      269.L
Properly (n—l)-dimensional quadric hypersurface      350.G
Properly convex (subset of a sphere)      274.E
Properly discontinuous transformation group      122.A
Properly divergent      379 A
Properly equivalent (binary quadratic forms)      348.M
Properly infinite      308.E
Properly intersect (on a variety)      16.G
Properly posed (initial value problem)      321.E
Properly posed (problems for partial differential equations)      322.A
Property (properties)      411.G
Property approximation      37.L
Property asymptotic (of solutions of a system of linear ordinary differential equations)      314.A
Property Baire      425.N
Property basic (of a structure)      409.B
Property bounded approximation      37.L
Property clustering      402.G
Property combinatorial      65.A
Property continuity, for Cech theory      201.M
Property countably productive      425.Y
Property covering homotopy      148.B
Property duality (of linear spaces)      256.G
Property equivalence      135.A
Property finite intersection      425.S
Property finite subset      396.F
Property global (in differential geometry)      109
Property homotopy extension      202.E
Property in the large (in differential geometry)      109
Property in the small (in differential geometry)      109
Property local (in differential geometry)      109
Property local (of a pseudodifferential operator)      345.A
Property Markov      261.B
Property micro-pseudolocal (of a pseudodifferential operator)      345.A
Property minimum curvature      223.F
Property minimum norm      223.F
Property of continuity (in a continuous geometry)      85.A
Property P conjecture      235.B
Property pseudo-orbit tracing      126.J
Property pseudolocal (of a pseudodifferential operator)      345.A
Property reproducing (of a probability distribution)      341.E App. Table
Property spectral      136.E
Property star-finite      425.S
Property strong Markov      261.B
Property topological      425.G
Property uniformity      399.N
Property universal mapping      52. L
Proposition(s) existential      411.B
Proposition(s) modal      411.L
Proposition(s) universal      411.B
Proposition(s) variables      411.E
Propositional calculus      411.F
Propositional connectives      411.E
Propositional function      411.C
Propositional logic      411.E
Protter, Murray H.(1918-)      78.r 106.r 216.r 323.r 327.r 350.r
Provable (formula)      411.I
Proximity function (of a meromorphic function)      272.B
Pruefer ring      200.K
Pruefer, Heinz(1896-1934)      2.D 200.K
Prugovecki, Eduard(1937-)      375.r
Przymusinski, Teodor C      117.E
Przytycki, Feliks      126.K
Pseudo-arc      79.D
Pseudo-Hermitian manifold      344.F
Pseudo-isotopic      65.D
Pseudo-isotopy      65.D
Pseudo-orbit      126.J
Pseudo-orbit $\alpha$-      126.J
Pseudo-orbit tracing property      126.J
Pseudo-ordering      311.H
Pseudo-Riemannian metric      105.P
Pseudo-Runge — Kutta method      303.D
Pseudoanalytic function, K-      352.B
Pseudocompact (space)      425.S
Pseudoconformal geometry      344.A
Pseudoconformal transformation      344.A
Pseudoconformally equivalent      344.A
Pseudoconvex (domain)      21.G
Pseudoconvex (domain) Cartan      21.I
Pseudoconvex (domain) d-      21.G
Pseudoconvex (domain) Levi      21.I
Pseudoconvex (domain) locally Cartan      21.I
Pseudoconvex (domain) locally Levi      21.I
Pseudoconvex (domain) strictly      344.A
Pseudoconvex (domain) strongly      21.G
Pseudodifferential operator      251.O 274.F 345
Pseudodistance Caratheodory      21.O
Pseudodistance function      273.B
Pseudodistance Kobayashi      21.O
Pseudofunction      125.C
Pseudogeometric ring      284.F
Pseudogroup (of topological transformations)      105.Y
Pseudogroup of transformations (on a topological space)      90.D
Pseudogroup structure      105.Y
Pseudointerior      382.B
Pseudolocal property (of a pseudodifferential operator)      345.A
Pseudolocal property micro-      345.A
Pseudomanifold      65.B
Pseudometric      273.B
Pseudometric space      273.B
Pseudometric space indiscrete      273.B
Pseudometric uniformity      436.F
Pseudometrizable      436.F
Pseudonorm (on a topological linear space)      37.O 424.F
Pseudopolynomial, distinguished      21.E
Pseudorandom numbers      354.B
Pseudosphere      111.I 285.E
Pseudotensorial form      80.G
Pseudovaluation      439.K
Pseudovaluation $\psi$-collective      354.E
Psi function      174.B
PSL(n,k)(projective special linear group)      60.B
Psychometrics      346
Ptak, Vlastimil(1925-)      424.X
pth power operation Pontryagin      64.B
pth power operation Steenrod      64.B
pth power, operator of summable      68.K
Ptolemy(Claudius Ptolemaeus)(c.85-c.I65)      187 432.C
PU(n)(projective unitary group)      60.F
Pugh, Charles C      126.J—L 126.r
Puiseux series      339.A
Puiseux, Victor Alexandre(1820-1883)      339.A
Pukanszky, Lajos      437.K 437.U
Pullback (of a differential form)      105.Q
Pullback (of a distribution)      125.Q
Pullback (of a divisor)      16.M
Puppe exact sequence      202.G
Puppe, Dieter(1930-)      200.r 202.G
Pure (continued fraction)      83.C
Pure (differential form)      367.H
Pure (state)      351.B
Pure geometry      181
Pure ideal      284.D
Pure integer programming problem      215.A
Pure number theory      156.E
Pure periodic continued fraction      83.C
Pure phase      402.G
Pure point spectrum      136.E
Pure strategy      173.B
Purely contractive      251.N
Purely contractive part      251.N
Purely d-dimensional analytic set      23.B
Purely d-dimensional analytic set (at a point)      23.B
Purely discontinuous distribution      341.D
Purely imaginary number      74.A
Purely infinite (von Neumann algebra)      308.E
Purely inseparable (extension of a field)      149.H
Purely inseparable (rational mapping)      16.I
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте