Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Principal polarization (of an Abelian variety)      3.G
principal quantum number      315.E
Principal series      258.C
Principal series (in an $\Omega$-group)      190.G
Principal series (of unitary representations of a complex semisimple Lie group)      437.W
Principal series(of unitary representations of a real semisimple Lie group)      437.X
Principal solution      104.B
Principal space (of a flag)      139.B
Principal subspace (of a linear operator)      390.B
Principal symbol      237.H
Principal symbol (of a microdifferential operator)      274.F
Principal symbol (of a simple holonomic system)      274.H
Principal theorem, Ahlfors      367.B
Principal value (of inverse trigonometric functions)      131.E
Principal value Cauchy (of an improper integral)      216.D
Principal value Cauchy (of the integral on infinite intervals)      216.E
Principal value of logZ      131.G
Principle(s) argument      198.F
Principle(s) balayage      338.L
Principle(s) Bellman      405.B
Principle(s) Cartan maximum      338.L
Principle(s) complete maximum      338.M
Principle(s) continuity      21.H
Principle(s) continuity (in potential theory)      338.C
Principle(s) contraction      286.B
Principle(s) correspondence      351.D
Principle(s) Dedekind (in a modular lattice)      243.F
Principle(s) dilated maximum (in potential theory)      338.C
Principle(s) Dirichlet      120.A 323.E
Principle(s) Dirichlet drawer      182.F
Principle(s) domination      338.L
Principle(s) Donsker in variance      250. E
Principle(s) duality (for closed convex cones)      89.F
Principle(s) duality, for ordering      311 .A
Principle(s) embedding (in dynamic programming)      127.B
Principle(s) energy      338.D
Principle(s) energy minimum      419.A
Principle(s) enthalpy minimum      419.C
Principle(s) entropy maximum      419.A
Principle(s) equilibrium      338.K
Principle(s) Fermat      180.A 441.C
Principle(s) first maximum (in potential theory)      338.C
Principle(s) Fisher three      102.A
Principle(s) Frostman maximum      338.C
Principle(s) general, of relativity      359.D
Principle(s) Gibbs free energy minimum      419.C
Principle(s) Hamilton      441.B
Principle(s) Hasse      348.G
Principle(s) Helmholtz free energy minimum      419.C
Principle(s) Huygens      325.B 446
Principle(s) Huygens, in the wider sense      325.D
Principle(s) invariance      375.B 400.E
Principle(s) inverse domination      338.L
Principle(s) limiting absorption      375.C
Principle(s) local maximum modulus      164.C
Principle(s) lower envelope      338.M
Principle(s) Maupertuis      180.A
Principle(s) maximal      193.E
Principle(s) maximum (for a holomorphic function)      43.B
Principle(s) maximum (for control theory)      86.F
Principle(s) maximum (for minimal surfaces)      275.B
Principle(s) maximum modulus (for a holomorphic function)      43.B
Principle(s) minimax (for $\lambda_k$)      391.G
Principle(s) minimax (for eigenvalues of a compact operator)      68.H
Principle(s) minimax (for statistical decision problem)      398.B
Principle(s) minimum (for $\lambda$)      391.D
Principle(s) minimum (for $\lambda_k$)      391.G
Principle(s) of condensation of singularities      37.H
Principle(s) of conditionality      401.C
Principle(s) of counting constants      16.S
Principle(s) of depending choice (DC)      33.F
Principle(s) of duality (in projective geometry)      343.B
Principle(s) of equal weight      402.E
Principle(s) of equivalence (in insurance mathematics)      214.A 359.D
Principle(s) of invariance of speed of light      359.B
Principle(s) of least action      441.B
Principle(s) of linearized stability      286.S
Principle(s) of localization (on convergence tests of Fourier series)      159.B
Principle(s) of nested intervals (for real numbers)      87.C 355.B
Principle(s) of optimality      127.A
Principle(s) of reflection      74.E
Principle(s) of sufficiency      401.C
Principle(s) of superposition      252.B 322.C
Principle(s) Oka      21.K 147.O
Principle(s) Pauli      351.H
Principle(s) Pringsheim theorem      58.E
Principle(s) quasicontinuity (in potential theory)      338.I
Principle(s) Rayleigh      68.H
Principle(s) reflection      45.E
Principle(s) Schwarz, of reflection      198.G
Principle(s) separation      405.C
Principle(s) special, of relativity      359
Principle(s) stochastic maximum      405.D
Principle(s) stored program      75.B
Principle(s) Strassen invariance      250.E
Principle(s) sweeping-out      338.L
Principle(s) Ugaheri maximum      338.C
Principle(s) uniqueness (in potential theory)      338.M
Principle(s) upper boundedness (in potential theory)      338.C
Principle(s) variational      441
Principle(s) variational (in statistical mechanics)      340.B 402.G
Principle(s) variational (in the theory of elasticity)      271.G
Principle(s) variational, for topological pressure      136.H
Principle(s) variational, with relaxed continuity requirement      271.G
Pringsheim, Alfred(1850-1941)      58.E 83.E
Prior density      401.B
Prior distribution      401.B 403.G
Probabilistic model      397.P
probability      342
Probability a posteriori      342.F
Probability a priori      342.F
Probability amplitude      351.D
Probability binomial, paper      19.B
Probability conditional      342.E
Probability continuous in      407.A
Probability converge in      342.D
Probability converge with, 1      342.D
Probability critical percolation      340.D
probability density      341.D
Probability distribution(s)      342.B App. Table
Probability distribution(s) (of random variables)      342.C
Probability distribution(s) (one-dimensional, of random variable)      342.C
Probability distribution(s) conditional      342.E
Probability distribution(s) n-dimensional      342.C
Probability error      213.D
Probability event with, 1      342.B
Probability extinction      44.B
Probability generating function      341.F 397.G
Probability geometric      218.A
Probability hitting, for single points      5.G
Probability integral      App. A Table
Probability measure      341 342.B
Probability objective      401.B
Probability of an event      342.B
Probability of loss      307.C
Probability paper      19.F
Probability paper binomial      19.B
Probability ratio test, sequential      400.L
Probability regular conditional      342.E
Probability ruin      214.C
Probability space      342.B
Probability standard, transition      260.F
Probability subjective      401.B
Probability that event $\varepsilon$ occurs      342.B
Probability transition      260.A 261.A 351.B
Probability, additivity of      342.B
Probability, theory of      342.A
Probable cause, most      401.E
Probable value, most      401.E
Problem(s) $\mathbf{LBA}$      31.D
Problem(s) 0-1 integer programming      215.A
Problem(s) Abel      217.L
Problem(s) abstract Cauchy      286.X
Problem(s) acoustic      325.L
Problem(s) adjoint boundary value      315.B
Problem(s) all-integer programming      215.A
Problem(s) Appolonius (in geometric construction)      179.A
Problem(s) Behrens — Fisher      400.G
Problem(s) Bernshtein, generalized      275.F
Problem(s) boundary value (of ordinary differential equations)      303.H 315.A
Problem(s) Burnside (in group theory)      161.C
Problem(s) Cauchy (for ordinary differential equations)      316.A
Problem(s) Cauchy (for partial differential equations)      320.B 321.A 325.B
Problem(s) class field tower      59.F
Problem(s) combinatorial      App. A Table
Problem(s) combinatorial triangulation      65.C
Problem(s) concave programming      292.A
Problem(s) conditional, in the calculus of variations      46.A
Problem(s) connection      253.A
Problem(s) construction      59.F
Problem(s) convex programming      292.A
Problem(s) corona      43.G
Problem(s) correctly posed (for partial differential equations)      322.A
Problem(s) Cousin, first      21.K
Problem(s) Cousin, second      21.K
Problem(s) Cramer — Castillon (in geometric construction)      179.A
Problem(s) critical inclination      55.C
Problem(s) decision      71.B 97 186.J
Problem(s) Delos (in geometric construction)      179.A
Problem(s) Dido      228.A
Problem(s) differentiable pinching      178.E
Problem(s) Dirichlet      120 193.F 323.C
Problem(s) Dirichlet divisor      242.A
Problem(s) Dirichlet, with obstracle      440.B
Problem(s) du Bois Reymond      159.H
Problem(s) dual      255.B 349.B
Problem(s) eigenvalue      390.A
Problem(s) exterior (Dirichlet problem)      120.A
Problem(s) first boundary value      193.F 323.C
Problem(s) flow-shop scheduling      376
Problem(s) four-color      157
Problem(s) Gauss circle      242.A
Problem(s) Gauss variational      338.J
Problem(s) general boundary value      323.H
Problem(s) generalized eigenvalue      298.G
Problem(s) generalized isoperimetric      46.A 228.A
Problem(s) generalized Pfaff      428.B
Problem(s) Geoecze      246.D
Problem(s) geometric construction      179.A
Problem(s) Goldbach      4.C
Problem(s) group-minimization      215.C
Problem(s) Hamburger moment      240.K
Problem(s) Hausdorff moment      240.K
Problem(s) Hersch      391.E
Problem(s) Hilbert (in calculus of variations)      46.A
Problem(s) Hilbert fifth      423.N
Problem(s) homeomorphism      425.G
Problem(s) homogeneous boundary value (of ordinary differential equations)      315.B
Problem(s) Hukuhara      315.C
Problem(s) impossible construction      179.A
Problem(s) inconsistent (of geometric construction)      179.A
Problem(s) inhomogeneous boundary value (of ordinary differential equations)      315.B
Problem(s) initial value (for functional differential equations)      163.D
Problem(s) initial value (for partial differential equations)      321.A
Problem(s) initial value (of ordinary differential equations)      313.C 316.A
Problem(s) initial value, for a hyperbolic partial differential equation      App. A Table
Problem(s) interior (Dirichlet problem)      120.A
Problem(s) interpolation      43.F
Problem(s) invariant measure      136.C
Problem(s) inverse (in potential scattering)      375.G
Problem(s) isomorphism (for graphs)      186.J
Problem(s) isomorphism (for integral group algebra)      362.K
Problem(s) isoperimetric      111.E 228.A
Problem(s) Jacobi inverse      3.L
Problem(s) job-shop scheduling problem      376
Problem(s) k-sample      371.D
Problem(s) Lagrange (in calculus of variations)      46.A
Problem(s) Levi      21.I
Problem(s) linear least squares      302.E
Problem(s) linear programming      255.A
Problem(s) local (on the solutions of differential equations)      289.A
Problem(s) machine scheduling      376
Problem(s) machine sequencing      376
Problem(s) Malfatti (in geometric construction)      179.A
Problem(s) many-body      402.F 420.A
Problem(s) martingale      115.C 261.C 406.A
Problem(s) maximum flow      281.C
Problem(s) minimum-cost flow      281.C
Problem(s) mixed integer programming      215.A
Problem(s) multicommodity flow      281.C
Problem(s) multiprocessor scheduling      376
Problem(s) n-body      420.A
Problem(s) n-decision      398.A
Problem(s) network-flow      281 282.B
Problem(s) Neumann (for harmonic functions)      193.F
Problem(s) Neumann (for partial differential equations of elliptic type)      323.F
Problem(s) nonlinear      291
Problem(s) normal Moore space      425.AA
Problem(s) of identification (in econometrics)      128.C
Problem(s) of satisfiability (of a proposition)      97
Problem(s) of specification      397.P
Problem(s) of universal validity of a proposition      97
Problem(s) optimal regulator      86.F
Problem(s) penalized      440.B
Problem(s) Pfaff      428.A
Problem(s) placement      235.A
Problem(s) Plateau      334.A
Problem(s) possible construction      179.A
Problem(s) primal      255.B
Problem(s) primary      255.B
Problem(s) properly posed      322.A
Problem(s) pure integer programming      215.A
Problem(s) quadratic programming      292.A 349.A
Problem(s) random walk      260.A
Problem(s) representation (on surface)      246.I
Problem(s) restricted Burnside (in group theory)      161.C
Problem(s) restricted three-body      420.F
Problem(s) Riemann      253.D
Problem(s) Riemann — Hilbert (for integral equations)      217.J
Problem(s) Riemann — Hilbert (for ordinary differential equations)      253.D
Problem(s) Robin      323.F
Problem(s) Schoenflies      65.G
Problem(s) second boundary value (for harmonic functions)      193.F
Problem(s) second boundary value (for partial differential equations of elliptic type)      323.F
Problem(s) second Cousin      21.K
Problem(s) self-adjoint boundary value      315.B
Problem(s) sequential decision      398.F
Problem(s) shortest path      281.C
Problem(s) single- commodity flow      281
Problem(s) singular initial value (for partial differential equations of mixed type)      326.C
Problem(s) smoothing      114.C
Problem(s) special isoperimetric      228.A
Problem(s) statistical decision      398.A
Problem(s) Steiner (in geometric construction)      179.A
Problem(s) Stieltjes moment      240.K
Problem(s) Sturm — Liouville      315.B
Problem(s) third boundary value (for harmonic functions)      193.F
Problem(s) third boundary value (for partial differential equations of elliptic type)      323.F
Problem(s) three big      187
Problem(s) three-body      420.A
Problem(s) Thues (general)      31.B
Problem(s) time optimal control      86.F
Problem(s) transformation (in a finitely presented group)      161.B
Problem(s) transient      322.D
Problem(s) transportation      255.C
Problem(s) transportation, on a network      255.C
Problem(s) Tricomi      326.C
Problem(s) two-body      55.A
Problem(s) two-point boundary value (of ordinary differential equations)      315.A
Problem(s) two-terminal      281
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте