Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Orthogonal matrix proper      269.J
Orthogonal measure      164.C
Orthogonal mutually (latin squares)      241.B
Orthogonal polynomial(s)      19.G App. Table
Orthogonal polynomial(s) Chebyshev      19.G
Orthogonal polynomial(s) simplest      19.G
Orthogonal polynomial(s), system of      317.D
Orthogonal projection (in a Hilbert space)      197.E
Orthogonal projection (in Euclidean geometry)      139.E 139.G
Orthogonal projection, method of      323.G
Orthogonal series (of functions)      317.A
Orthogonal set (of a Hilbert space)      197.C
Orthogonal set (of a ring)      368.B
Orthogonal set (of functions)      317.A
Orthogonal system (of a Hilbert space)      197.C
Orthogonal system (of functions)      317.A
Orthogonal system complete      217.G
Orthogonal trajectory      193.J
Orthogonal transformation      139.B 348.B
Orthogonal transformation (over a noncommutative field)      60.O
Orthogonal transformation (with respect to a quadratic form)      60.K
Orthogonal transformation group      60.I
Orthogonal transformation group over K with respect to Q      60.K
Orthogonality for a finite sum      317.D App. Table
Orthogonality relation (for square integrable unitary representations)      437.M
Orthogonality relation (on irreducible characters)      362.G
Orthogonalization Gram — Schmidt      317.A
Orthogonalization Schmidt      317. A
Orthomodular      351.L
Orthonomic system, passive (of partial differential equations)      428.B
Orthonormal basis      197.C
Orthonormal moving frame      417.D
Orthonormal set (of a Hilbert space)      197.C
Orthonormal set (of functions)      317.A
Orthonormal set complete (of a Hilbert space)      197.C
Orthonormal system complete      217.G
Orthonormal system complete (of fundamental functions)      217.G
Orthonormalization      139.G
Orthorhombic system      92.E
Orzech, Morris(1942-)      29.r
Oscillate (for a sequence)      87.D
Oscillating (series)      379.A
Oscillating motion      420.D
Oscillation(s)      318
Oscillation(s) (of a function)      216.A
Oscillation(s) bounded mean      168.B
Oscillation(s) damped      318.B
Oscillation(s) forced      318.B
Oscillation(s) harmonic      318.B
Oscillation(s) nonlinear      290.A
Oscillation(s) nonstationary      290.F
Oscillation(s) relaxation      318.C
Oscillation(s), equation of      App. A Table
Oscillator process      351.F
Oscillatory      314.F
Osculating circle      111.F
Osculating elements      309.D
Osculating plane      111.F
Osculating process      77.B
Oseen approximation      205.C
Oseen, William(1879-)      205.C
Oseledets, Valerii Iustinovich(1940-)      136.B
Osgood theorem, Hartogs —      21.H
Osgood, William Fogg(1864-1943)      3.r 11.r 21.H 21.r 107.A
Oshima, Toshio(1948-)      274.r 437.CC 437.r
Osikawa, Motosige(1939-)      136.F
Osima, Masaru(1912-)      109.r 275.A—E 275.r 334.F 334.r 365.H 391.D
Osterwalder — Schrader axioms      150.F
Osterwalder, Konrad(1942-)      150.F
Ostrogradskii formula      94.F
Ostrogradskii, Mikhail Vasil’evich(1801-1862)      94.F
Ostrowski, Alexander(1893-)      14.F 58.F 88.A 88.r 106.r 121.C 205.r 216.r 272.F 301.r 339.E 388.B 439.L
Oswatitsch, Klaus(1910-)      207.C
Otsuki, Nobukazu(1942-)      136.r
Otsuki, Tominosuke(1917-)      275.A 275.F 365.B
Ouchi, Sunao(1945-)      378.F
Out-state      150.D 386.A
Outdegree      186.B
Outer area      216.F 270.G
Outer automorphisms group of (of a group)      190.D
Outer automorphisms, group of (of a Lie algebra)      248.H
Outer capacity, Newtonian      48.H
Outer function      43.F
Outer harmonic measure      169.B
Outer measure      270.E 270.G
Outer measure Caratheodory      270.E
Outer measure Lebesgue      270.G
Outer solution      25.B
Outer variable      25.B
Outer volume      270.G
Outgoing subspace      375.H
Outgoing wave operator      375.B
Outlier test      397.Q
Oval      89.C 111.E
Oval Cassini      93.H
Oval mean (of two ovals)      89.D
Oval width of the      111.E
Ovaloid      89.C 111.I
Overall approximation formula      303.C
Overconvergence      339.E
Overcrossing point      235.A
Overdetermined system (of differential operators)      112.I
Overdetermined system (of partial differential equations)      320.F
Overdetermined system maximally (= holonomic)      274.H
Overfield      149.B
Overidentified      128.C
Overrelaxation successive (SOR)      302.C
Ovsyannikov, Lev Vasil’evich(1919-)      286.Z
Owen, Donald B.      STR
Oxtoby, John Corning(1910-)      136.H
Ozawa, Mitsuru(1923-)      17.C 367.E 438.C
Ozeki, Hideki(1931-)      365.I 365.r
O’Meara, Onorato Timothy(1928-)      348.r
O’Nan, Michael E.      151.H 151.I
O’Neil, Richard      224.E
O’Neill, Barrett(1924-)      111.r 178.r 365.B 365.G
O’Neill, Bernard V., Jr.      164.F
p-adic integer(s)      439.F
p-adic integer(s), ring of      439.F
p-adic L-function      450.J
p-adic number      439.F
p-adic number field      257.A 439.F
p-adic regulator      450.J
p-adic valuation      439.F
p-ary matroid      66.H
p-atom      168.B
P-convex (for a differential operator)      112.C
P-convex strongly      112.C
p-covector      256.O
p-dimensional noncentral Wishart distribution      374.C
p-extension (of a field)      59.F
p-factor (of an element of a group)      362.I
p-fold exterior power (of a linear space)      256.O
p-fold exterior power (of a vector bundle)      147.F
p-form tensorial      417.C
p-form vectorial      417.C
P-function, Riemann      253.B App. Tables 18.I
p-group      151.B
p-group Abelian      2.A
p-group complete (Abelian)      2.D
p-group divisible (Abelian)      2.D
p-parabolic type      327.H
P-projective resolution      200.Q
p-rank (of a torsion-free additive group)      2.E
p-regular (element of a finite group)      362.I
p-space      425.Y
p-Sylow subgroup      151.B
p-torsion group of an exceptional group      App. A Table
p-valent (function)      438.E
p-valent (function) absolutely      438.E
p-valent (function) circumferentially mean      438.E
p-valent (function) locally      438.E
p-valent (function) locally absolute      438.E
p-valent (function) mean      438.E
p-valent (function) quasi-      438.E
p-vector      256.O
p-vector, bundle of      147.F
P-wave      351.E
Paatero, Veikko(1903-)      198.r
Pacioli, Luca(c.1445-c.1514)      360
Pade approximation      142.E
Pade table      142.E
Pade, Henri Eugene(1863-1953)      142.E
Page, Annie      123.D
Paige, Christopher Conway(1939-)      241.C
Painleve equation      288.C
Painleve theorem      198.G
Painleve transcendental function      288.C
Painleve, Paul(1863-1933)      198.G 288.A—D 288.r 420.C
pair      381.B
Pair (in axiomatic set theory)      33.B
Pair ball      235.G
Pair BN-      13.R
Pair contact (in circle geometry)      76.C
Pair group (of topological Abelian groups)      422.I
Pair order      381.B
Pair ordered (in axiomatic set theory)      33.B
Pair orthogonal group      422.I
Pair Poincare, of formal dimension n      114.J
Pair simplicial      201. L
Pair sphere      65.D 235.G
Pair test      346.D
Pair topological      201.L
Pair unordered      381.B
Pair unordered (in axiomatic set theory)      33.B
Paired comparison      346.C
Pairing (of linear spaces)      424.G
Pairing, axiom of      381.G
Pairwise sufficient (statistic)      396.F
Pal, J.      89.C
Palais — Smale condition (C)      279.E 286.Q
Palais, Richard Sheldon(1931-)      80.r 105.Z 105.r 183.* 183.r 191.G 279.A 279.E 286.Q 286.r 431.r
Palamodov, Viktor Pavlovich(1938-)      112.R
Paley theorem      317.B
Paley theory, Littlewood —      168.B
Paley — Wiener theorem      125.O 125.BB
Paley, Raymond Edward Alan Christopher(1907-1933)      45.r 58.r 125.O 125.BB 159.G 160.E 160.G 160.r 168.B 192.F 192.r 272.K 295.E 317.B
Palis, Jacob, Jr.      126.C 126.J 126.M 126.r
Pan, Viktor Yakovlevich(1939-)      71.D
Panofsky, Wolfgang Kurt German(1919-)      130.r
Pantograph      19.E
Papakyriakopoulos, Christos Dimitriou(1914-1976)      65.E 235.A
Papanicolaou, George C.(1943-)      115.D
Paper binomial probability      19.B
Paper functonal      19.D
Paper logarithmic      19.F
Paper probability      19.F
Paper semilogarithmic      19.F
Paper stochastic      19.B
Papert, Seymour      385.r
Pappus theorem (in projective geometry)      343.C
Pappus theorem (on conic sections)      78.K
Pappus(of Alexandria)(fl.320)      78.K 187 343.D
Parabola(s)      78.A
Parabola(s) family of confocal      78.H
Parabolic (differential operator)      112.A
Parabolic (Riemann surface)      367.D 367.E
Parabolic (simply connected domain)      77.B
Parabolic (visibility manifold)      178.F
Parabolic coordinates      90.C App. Table
Parabolic cusp (of a Fuchsian group)      122.C
Parabolic cylinder      350.B
Parabolic cylinder function      167.C
Parabolic cylindrical coordinates      167.C App. Table
Parabolic cylindrical equation      App. A Table
Parabolic cylindrical surface      350.B
Parabolic geometry      285.A
Parabolic motion      420.D
Parabolic point (on a surface)      110.B 111.H
Parabolic quadric hypersurface      350.I
Parabolic subalgebra (of a semisimple Lie algebra)      248.O
Parabolic subgroup (of a Lie group)      249.J
Parabolic subgroup (of an algebraic group)      13.G
Parabolic subgroup (of the BN-pair)      13.R
Parabolic subgroup cuspidal      437.X
Parabolic subgroup minimal k-      13.Q
Parabolic subgroup standard k-      13.Q
Parabolic transformation      74.F
Parabolic type (equation of evolution)      378.I
Parabolic type, partial differential equation of      327
Parabolic-elliptic motion      420.D
Paraboloid elliptic      350.B
Paraboloid elliptic, of revolution      350.B
Paraboloid hyperbolic      350.B
Paracompact $C^r$-manifold      105.D
Paracompact (space)      425.S
Paracompact countably      425.Y
Paracompact strongly      425.S
Paradox(es)      319
Paradox(es) Burali — Forti      319.B
Paradox(es) d’Alembert      205.C
Paradox(es) Richard      319.B
Paradox(es) Russel      319.B
Paradox(es) Skolem      156.E
Paradox(es) Zeno      319.C
Parallax annual      392
Parallax geocentric      392
Parallel coordinates (in an affine space)      7.C
Parallel displacement (in a connection)      80.C
Parallel displacement (in an affine connection)      80.H
Parallel displacement (in the Riemannian connection)      364.B
Parallel projection (in an affine space)      7.C
Parallel translation      80.C 364.B
Parallel(s) (affine subspaces)      7.B
Parallel(s) (lines in hyperbolic geometry)      285.B
Parallel(s) (lines)      139.A 155.B
Parallel(s) (tensor field)      364.B
Parallel(s) in the narrow sense (in an affine space)      7.B
Parallel(s) in the sense of Levi — Civita      111.H
Parallel(s) in the wider sense (in an affine geometry)      7.B
Parallel(s), axioms of      139.A
Parallelepiped, rectangular      14.O
Parallelism, absolute      191.B
Parallelizable (flow)      126.E
Parallelizable (manifold)      114.I
Parallelizable almost      114.I
Parallelizable s-      114.I
Parallelizable stably      114.I
Parallelogram, period      134.E
Parallelotope      425.T
Parallelotope (in an affine space)      7.D
Parallelotope open (in an affine space)      7.D
Parameter space (of a family of compact complex manifolds)      72.G
Parameter space (of a family of probability measures)      398.A
Parameter space (of a probability distribution)      396.B
Parameter(s)      165.C
Parameter(s) (in a population distribution)      401.F
Parameter(s) (of a probability distribution)      396.B
Parameter(s) (of an elliptic integral)      134.A
Parameter(s) acceleration      302.C
Parameter(s) canonical (of an arc)      111.D
Parameter(s) design for estimating      102.M
Parameter(s) estimable      403.E
Parameter(s) isothermal      334.B
Parameter(s) isothermal (for an analytic surface)      111.I 334.B
Parameter(s) linear      102.A
Parameter(s) linearly estimable      403.E
Parameter(s) local (Fuchsian groups)      32.B
Parameter(s) local (of a nonsingular algebraic curve)      9.C
Parameter(s) local (of a Riemann surface)      367.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте