|
|
 |
| Авторизация |
|
|
 |
| Поиск по указателям |
|
 |
|
 |
|
|
 |
 |
|
 |
|
| Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
 |
| Предметный указатель |
Orthogonal matrix proper 269.J
Orthogonal measure 164.C
Orthogonal mutually (latin squares) 241.B
Orthogonal polynomial(s) 19.G App. Table
Orthogonal polynomial(s) Chebyshev 19.G
Orthogonal polynomial(s) simplest 19.G
Orthogonal polynomial(s), system of 317.D
Orthogonal projection (in a Hilbert space) 197.E
Orthogonal projection (in Euclidean geometry) 139.E 139.G
Orthogonal projection, method of 323.G
Orthogonal series (of functions) 317.A
Orthogonal set (of a Hilbert space) 197.C
Orthogonal set (of a ring) 368.B
Orthogonal set (of functions) 317.A
Orthogonal system (of a Hilbert space) 197.C
Orthogonal system (of functions) 317.A
Orthogonal system complete 217.G
Orthogonal trajectory 193.J
Orthogonal transformation 139.B 348.B
Orthogonal transformation (over a noncommutative field) 60.O
Orthogonal transformation (with respect to a quadratic form) 60.K
Orthogonal transformation group 60.I
Orthogonal transformation group over K with respect to Q 60.K
Orthogonality for a finite sum 317.D App. Table
Orthogonality relation (for square integrable unitary representations) 437.M
Orthogonality relation (on irreducible characters) 362.G
Orthogonalization Gram — Schmidt 317.A
Orthogonalization Schmidt 317. A
Orthomodular 351.L
Orthonomic system, passive (of partial differential equations) 428.B
Orthonormal basis 197.C
Orthonormal moving frame 417.D
Orthonormal set (of a Hilbert space) 197.C
Orthonormal set (of functions) 317.A
Orthonormal set complete (of a Hilbert space) 197.C
Orthonormal system complete 217.G
Orthonormal system complete (of fundamental functions) 217.G
Orthonormalization 139.G
Orthorhombic system 92.E
Orzech, Morris(1942-) 29.r
Oscillate (for a sequence) 87.D
Oscillating (series) 379.A
Oscillating motion 420.D
Oscillation(s) 318
Oscillation(s) (of a function) 216.A
Oscillation(s) bounded mean 168.B
Oscillation(s) damped 318.B
Oscillation(s) forced 318.B
Oscillation(s) harmonic 318.B
Oscillation(s) nonlinear 290.A
Oscillation(s) nonstationary 290.F
Oscillation(s) relaxation 318.C
Oscillation(s), equation of App. A Table
Oscillator process 351.F
Oscillatory 314.F
Osculating circle 111.F
Osculating elements 309.D
Osculating plane 111.F
Osculating process 77.B
Oseen approximation 205.C
Oseen, William(1879-) 205.C
Oseledets, Valerii Iustinovich(1940-) 136.B
Osgood theorem, Hartogs — 21.H
Osgood, William Fogg(1864-1943) 3.r 11.r 21.H 21.r 107.A
Oshima, Toshio(1948-) 274.r 437.CC 437.r
Osikawa, Motosige(1939-) 136.F
Osima, Masaru(1912-) 109.r 275.A—E 275.r 334.F 334.r 365.H 391.D
Osterwalder — Schrader axioms 150.F
Osterwalder, Konrad(1942-) 150.F
Ostrogradskii formula 94.F
Ostrogradskii, Mikhail Vasil’evich(1801-1862) 94.F
Ostrowski, Alexander(1893-) 14.F 58.F 88.A 88.r 106.r 121.C 205.r 216.r 272.F 301.r 339.E 388.B 439.L
Oswatitsch, Klaus(1910-) 207.C
Otsuki, Nobukazu(1942-) 136.r
Otsuki, Tominosuke(1917-) 275.A 275.F 365.B
Ouchi, Sunao(1945-) 378.F
Out-state 150.D 386.A
Outdegree 186.B
Outer area 216.F 270.G
Outer automorphisms group of (of a group) 190.D
Outer automorphisms, group of (of a Lie algebra) 248.H
Outer capacity, Newtonian 48.H
Outer function 43.F
Outer harmonic measure 169.B
Outer measure 270.E 270.G
Outer measure Caratheodory 270.E
Outer measure Lebesgue 270.G
Outer solution 25.B
Outer variable 25.B
Outer volume 270.G
Outgoing subspace 375.H
Outgoing wave operator 375.B
Outlier test 397.Q
Oval 89.C 111.E
Oval Cassini 93.H
Oval mean (of two ovals) 89.D
Oval width of the 111.E
Ovaloid 89.C 111.I
Overall approximation formula 303.C
Overconvergence 339.E
Overcrossing point 235.A
Overdetermined system (of differential operators) 112.I
Overdetermined system (of partial differential equations) 320.F
Overdetermined system maximally (= holonomic) 274.H
Overfield 149.B
Overidentified 128.C
Overrelaxation successive (SOR) 302.C
Ovsyannikov, Lev Vasil’evich(1919-) 286.Z
Owen, Donald B. STR
Oxtoby, John Corning(1910-) 136.H
Ozawa, Mitsuru(1923-) 17.C 367.E 438.C
Ozeki, Hideki(1931-) 365.I 365.r
O’Meara, Onorato Timothy(1928-) 348.r
O’Nan, Michael E. 151.H 151.I
O’Neil, Richard 224.E
O’Neill, Barrett(1924-) 111.r 178.r 365.B 365.G
O’Neill, Bernard V., Jr. 164.F
p-adic integer(s) 439.F
p-adic integer(s), ring of 439.F
p-adic L-function 450.J
p-adic number 439.F
p-adic number field 257.A 439.F
p-adic regulator 450.J
p-adic valuation 439.F
p-ary matroid 66.H
p-atom 168.B
P-convex (for a differential operator) 112.C
P-convex strongly 112.C
p-covector 256.O
p-dimensional noncentral Wishart distribution 374.C
p-extension (of a field) 59.F
p-factor (of an element of a group) 362.I
p-fold exterior power (of a linear space) 256.O
p-fold exterior power (of a vector bundle) 147.F
p-form tensorial 417.C
p-form vectorial 417.C
P-function, Riemann 253.B App. Tables 18.I
p-group 151.B
p-group Abelian 2.A
p-group complete (Abelian) 2.D
p-group divisible (Abelian) 2.D
p-parabolic type 327.H
P-projective resolution 200.Q
p-rank (of a torsion-free additive group) 2.E
p-regular (element of a finite group) 362.I
p-space 425.Y
p-Sylow subgroup 151.B
p-torsion group of an exceptional group App. A Table
p-valent (function) 438.E
p-valent (function) absolutely 438.E
| p-valent (function) circumferentially mean 438.E
p-valent (function) locally 438.E
p-valent (function) locally absolute 438.E
p-valent (function) mean 438.E
p-valent (function) quasi- 438.E
p-vector 256.O
p-vector, bundle of 147.F
P-wave 351.E
Paatero, Veikko(1903-) 198.r
Pacioli, Luca(c.1445-c.1514) 360
Pade approximation 142.E
Pade table 142.E
Pade, Henri Eugene(1863-1953) 142.E
Page, Annie 123.D
Paige, Christopher Conway(1939-) 241.C
Painleve equation 288.C
Painleve theorem 198.G
Painleve transcendental function 288.C
Painleve, Paul(1863-1933) 198.G 288.A—D 288.r 420.C
pair 381.B
Pair (in axiomatic set theory) 33.B
Pair ball 235.G
Pair BN- 13.R
Pair contact (in circle geometry) 76.C
Pair group (of topological Abelian groups) 422.I
Pair order 381.B
Pair ordered (in axiomatic set theory) 33.B
Pair orthogonal group 422.I
Pair Poincare, of formal dimension n 114.J
Pair simplicial 201. L
Pair sphere 65.D 235.G
Pair test 346.D
Pair topological 201.L
Pair unordered 381.B
Pair unordered (in axiomatic set theory) 33.B
Paired comparison 346.C
Pairing (of linear spaces) 424.G
Pairing, axiom of 381.G
Pairwise sufficient (statistic) 396.F
Pal, J. 89.C
Palais — Smale condition (C) 279.E 286.Q
Palais, Richard Sheldon(1931-) 80.r 105.Z 105.r 183.* 183.r 191.G 279.A 279.E 286.Q 286.r 431.r
Palamodov, Viktor Pavlovich(1938-) 112.R
Paley theorem 317.B
Paley theory, Littlewood — 168.B
Paley — Wiener theorem 125.O 125.BB
Paley, Raymond Edward Alan Christopher(1907-1933) 45.r 58.r 125.O 125.BB 159.G 160.E 160.G 160.r 168.B 192.F 192.r 272.K 295.E 317.B
Palis, Jacob, Jr. 126.C 126.J 126.M 126.r
Pan, Viktor Yakovlevich(1939-) 71.D
Panofsky, Wolfgang Kurt German(1919-) 130.r
Pantograph 19.E
Papakyriakopoulos, Christos Dimitriou(1914-1976) 65.E 235.A
Papanicolaou, George C.(1943-) 115.D
Paper binomial probability 19.B
Paper functonal 19.D
Paper logarithmic 19.F
Paper probability 19.F
Paper semilogarithmic 19.F
Paper stochastic 19.B
Papert, Seymour 385.r
Pappus theorem (in projective geometry) 343.C
Pappus theorem (on conic sections) 78.K
Pappus(of Alexandria)(fl.320) 78.K 187 343.D
Parabola(s) 78.A
Parabola(s) family of confocal 78.H
Parabolic (differential operator) 112.A
Parabolic (Riemann surface) 367.D 367.E
Parabolic (simply connected domain) 77.B
Parabolic (visibility manifold) 178.F
Parabolic coordinates 90.C App. Table
Parabolic cusp (of a Fuchsian group) 122.C
Parabolic cylinder 350.B
Parabolic cylinder function 167.C
Parabolic cylindrical coordinates 167.C App. Table
Parabolic cylindrical equation App. A Table
Parabolic cylindrical surface 350.B
Parabolic geometry 285.A
Parabolic motion 420.D
Parabolic point (on a surface) 110.B 111.H
Parabolic quadric hypersurface 350.I
Parabolic subalgebra (of a semisimple Lie algebra) 248.O
Parabolic subgroup (of a Lie group) 249.J
Parabolic subgroup (of an algebraic group) 13.G
Parabolic subgroup (of the BN-pair) 13.R
Parabolic subgroup cuspidal 437.X
Parabolic subgroup minimal k- 13.Q
Parabolic subgroup standard k- 13.Q
Parabolic transformation 74.F
Parabolic type (equation of evolution) 378.I
Parabolic type, partial differential equation of 327
Parabolic-elliptic motion 420.D
Paraboloid elliptic 350.B
Paraboloid elliptic, of revolution 350.B
Paraboloid hyperbolic 350.B
Paracompact -manifold 105.D
Paracompact (space) 425.S
Paracompact countably 425.Y
Paracompact strongly 425.S
Paradox(es) 319
Paradox(es) Burali — Forti 319.B
Paradox(es) d’Alembert 205.C
Paradox(es) Richard 319.B
Paradox(es) Russel 319.B
Paradox(es) Skolem 156.E
Paradox(es) Zeno 319.C
Parallax annual 392
Parallax geocentric 392
Parallel coordinates (in an affine space) 7.C
Parallel displacement (in a connection) 80.C
Parallel displacement (in an affine connection) 80.H
Parallel displacement (in the Riemannian connection) 364.B
Parallel projection (in an affine space) 7.C
Parallel translation 80.C 364.B
Parallel(s) (affine subspaces) 7.B
Parallel(s) (lines in hyperbolic geometry) 285.B
Parallel(s) (lines) 139.A 155.B
Parallel(s) (tensor field) 364.B
Parallel(s) in the narrow sense (in an affine space) 7.B
Parallel(s) in the sense of Levi — Civita 111.H
Parallel(s) in the wider sense (in an affine geometry) 7.B
Parallel(s), axioms of 139.A
Parallelepiped, rectangular 14.O
Parallelism, absolute 191.B
Parallelizable (flow) 126.E
Parallelizable (manifold) 114.I
Parallelizable almost 114.I
Parallelizable s- 114.I
Parallelizable stably 114.I
Parallelogram, period 134.E
Parallelotope 425.T
Parallelotope (in an affine space) 7.D
Parallelotope open (in an affine space) 7.D
Parameter space (of a family of compact complex manifolds) 72.G
Parameter space (of a family of probability measures) 398.A
Parameter space (of a probability distribution) 396.B
Parameter(s) 165.C
Parameter(s) (in a population distribution) 401.F
Parameter(s) (of a probability distribution) 396.B
Parameter(s) (of an elliptic integral) 134.A
Parameter(s) acceleration 302.C
Parameter(s) canonical (of an arc) 111.D
Parameter(s) design for estimating 102.M
Parameter(s) estimable 403.E
Parameter(s) isothermal 334.B
Parameter(s) isothermal (for an analytic surface) 111.I 334.B
Parameter(s) linear 102.A
Parameter(s) linearly estimable 403.E
Parameter(s) local (Fuchsian groups) 32.B
Parameter(s) local (of a nonsingular algebraic curve) 9.C
Parameter(s) local (of a Riemann surface) 367.A
|
|
 |
| Реклама |
 |
|
|