Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Optimal solution      255.A 264.B 292.A
Optimal solution basic      255.A
Optimal stopping      405.E
Optimality A-      102.E
Optimality D-      102.E
Optimality E-      102.E
Optimality, principle of      127. A
Optimization model      307.C
Optimum allocation      373.E
Optimum predictor, linear      395.D
Optional $\sigma$-algebra      407.B
Optional (stochastic process)      407.B
Optional sampling      262.C
Optional sampling theorem      262.A
Orbit (= system of transitivity)      362.B
Orbit (of a dynamical system)      126.B
Orbit (of a permutation group)      151.H
Orbit (of a topological transformation group)      110.A 431.A
Orbit closed      126.D
Orbit determination      309.A
Orbit exceptional      431.C
Orbit principal      431.C
Orbit pseudo-, $\alpha$-      126. J
Orbit pseudo-, tracing property      126.J
Orbit singular      431.C
Orbit space (of a topological group)      431.A
Orbit type      431.A
Orbit type principal      431.C
Orbital angular momentum      351.E
Orbital elements, Kepler’s      309.B
Orbital stability (of a solution of a differential equation)      394.D
Orbitally stable      126.F
Ord, J.Keith      374.r
Order $\alpha$, capacity of      169.C
Order $\alpha$, Cesaro method of summation of      379.M
Order $\alpha$, Hoelder condition of      84.A
Order $\alpha$, Lipschitz condition of      84.A
Order $\alpha$, potential of      338.B
Order $\alpha$, summable by Cesaro’s method of      379.M
Order $\gamma$-point of the fcth (of a holomorphic function)      198.C
Order ( = a subring)      27.A
Order ( = order relation)      311.A
Order (of a covering)      425.R
Order (of a differential equation)      313.A 320.A
Order (of a differential operator)      112.A
Order (of a function defined by a Dirichlet series)      121.C
Order (of a function on an algebraic curve)      9.C
Order (of a generating point of a simple maximally overdetermined system)      274.H
Order (of a group)      190.C
Order (of a homomorphism of Abelian varieties)      3.C
Order (of a Lie algebra)      191.D
Order (of a meromorphic function)      272.C
Order (of a microdifferential operator)      274.F
Order (of a multistep method)      303.E
Order (of a plane algebraic curve)      9.B
Order (of a point in an ordinary curve)      93.C
Order (of a point with respect to a cycle)      99.D
Order (of a pole of a complex function)      198.D
Order (of a system of differential equations)      313.B
Order (of a transcendental entire function)      429.B
Order (of a zero point of a complex function)      198.C
Order (of an algebraic number field)      14.B
Order (of an element of a group)      190.C
Order (of an elliptic function)      134.E
Order (of an infinitesimal)      87.G
Order (of an infinity)      87.G
Order (of the precision of numerical solution)      303.B
Order 0, frame of      110.C
Order 1, family of frames of      110.B
Order 1, frame of      110.C
Order 2, frame of      110.B 110.C
Order 3, frame of      110.B 110.C
Order 4, frame of      110.B
Order at most (a function)      87.G
Order bounded      310.B
Order convergent sequence (in a vector lattice)      310.C
Order derivatives of higher      App. A Table
Order d’Alembert’s method of reduction of      252.F
Order finite (distribution)      125.J
Order function (meromorphic function)      272.B
Order homomorphic (ordered sets)      311.E
Order homomorphism      311.E
Order ideal (of a vector lattice)      310.B
Order infinite (element in a group)      190.C
Order isomorphic (ordered sets)      311.E
Order isomorphism      311.E
Order k, coefficient of      110.A
Order k, converge in the mean of      173.B 342.D
Order k, invariants of      110.A
Order k, population moment of      396.C
Order k, principal components of      110.A
Order k, quantile of      341.H
Order k, Riesz method of summation      379.R
Order k, summable by Hoelder’s method of      379.M
Order k, summable by M. Riesz’s method of      379.R
Order left(of a g-lattice)      27.A
Order limit (in a vector lattice)      310.C
Order maximal (of a g-lattice)      27.A
Order of higher      87.G
Order of lower      87.G
Order of the nth      87.G
Order of the same      87.G
Order p, contravariant tensor field of      105.O
Order p, jet of      105.X
Order principal (fundamental theorem of)      14.C
Order principal (of an algebraic number field)      14.B
Order relation      311.A
Order right (of a g-lattice)      27.A
Order s, covariant tensor field of      105.O
Order small set of      436.G
Order space of line elements of higher      152.C
Order statistic      396.C
Order surface of the second      350.A
Order topology      425.C
Order type      312.A
Order zero point of the kth (of a holomorphic function)      198.C
Order zero point of the — kth (of a complex function)      198.D
Order, difference of the nth      104.A
Order-convergent (in a vector lattice)      310.C
Order-disorder transition      402.F
Order-preserving mapping      311.E
Order-preserving semigroup      286.Y
Ordered additive group      439.B
Ordered additive group totally      439.B
Ordered complex (of a semisimplicial complex)      70.E
Ordered field      149.N
Ordered field Archimedean      149.N
Ordered field Pythagorean      60.O
Ordered group      243.G
Ordered group lattice-      243.G
Ordered group totally      243.G
Ordered linear spaces      310.B
Ordered linear spaces lattice-      310.B
Ordered pair      33.B 381.B
Ordered set      311.A
Ordered set inductively      34.C
Ordered set lattice-      243.A
Ordered set linearly      311.A
Ordered set partially      311.A
Ordered set semi-      311.A
Ordered set totally      311. A
Ordered simplex (in a simplicial complex)      70.E
Ordered simplicial complex      70.C
Ordering      96.C 311.A
Ordering dual      311.A
Ordering duality principle for      311.A
Ordering lexicographic      311.G
Ordering lexicographic linear      248.M
Ordering linear      311.A
Ordering partial      311.A
Ordering pre-      311.H
Ordering total      311.A
Ordering well-      311.C
Ordeshook, Peter C.      173.r
Ordinal numbers      312.B
Ordinal numbers admissible      356.G
Ordinal numbers constructive      81.B
Ordinal numbers countable      49.E
Ordinal numbers finite      312.B
Ordinal numbers hyperconstructive      81.E
Ordinal numbers initial      49.E
Ordinal numbers isolated      312.B
Ordinal numbers limit      312.B
Ordinal numbers of a higher number class      312.D
Ordinal numbers of the first, second, or third number class      312.D
Ordinal numbers strongly inaccessible      312.E
Ordinal numbers transfinite initial      49.E
Ordinal numbers transfmite      312.B
Ordinal numbers weakly inaccessible      312.E
Ordinal numbers, cardinality of      49.E
Ordinal product (of a family of ordered sets)      311.G
Ordinal scale      397.M
Ordinal sum (of a family of ordered sets)      311.G
Ordinary curve      93.C
Ordinary derivative (of a set function)      380.D
Ordinary differential equation(s)      313 App. Table
Ordinary differential equation(s) (asymptotic behavior of solutions)      314
Ordinary differential equation(s) (boundary value problems)      315
Ordinary differential equation(s) (initial value problems)      316
Ordinary differential equation(s) Euler linear      App. A Table
Ordinary differential equation(s) higher-order      App. A Table
Ordinary differential equation(s) homogeneous      App. A Table
Ordinary differential equation(s) homogeneous (of higher order)      App. A Table
Ordinary differential equation(s) linear      252 313.A
Ordinary differential equation(s) linear (global theory)      253
Ordinary differential equation(s) linear (local theory)      254
Ordinary differential equation(s) linear (of higher order)      App. A Table
Ordinary differential equation(s) linear (of the first order)      App. A. Table 14.I
Ordinary differential equation(s) linear (with constant coefficients)      App. A Table
Ordinary differential equation(s) nonlinear      313.A
Ordinary differential equation(s) nonlinear (global theory)      288
Ordinary differential equation(s) nonlinear (local theory)      289
Ordinary differential equation(s), system of      313.B
Ordinary differential operator      112.A
Ordinary Dirichlet series      121.A
Ordinary double point (of a plane algebraic curve)      9.B
Ordinary element      191.I
Ordinary helicoid      111.I
Ordinary helix      111.F 114.F
Ordinary integral element      428.E
Ordinary integral manifold (of a differential ideal)      428.E
Ordinary lower derivative (of a set function)      380.D
Ordinary point (in hyperbolic geometry)      285.C
Ordinary point (of a curve)      93.G
Ordinary point (of an analytic set)      23.B
Ordinary point (of an ordinary curve)      93.C
Ordinary point (on a Riemann surface)      11.D
Ordinary representation (of a finite group)      362.G
Ordinary sense, derivable in the      380.D
Ordinary singularity (of an analytic function)      198.P
Ordinary singularity in the wider sense      198.P
Ordinary solution (of a differential ideal)      428.E
Ordinary upper derivative (of a set function)      380.D
Ordinate set      221.E
Ore, Oystein(1899-1968)      157.r 190.L
Oresme, Nicole(c.1320(30)-1382)      372
Orey, Steven(1928-)      260.J
Orientable (manifold)      105.F 201.N
Orientable (pseudomanifold)      65.B
Orientable fiber bundle      147.L
Orientable transversely      154.B
Orientation (of a contact element)      110. A
Orientation (of a manifold)      105.F 201.N
Orientation (of an affine space)      139.B
Orientation cohomology class      201.N
Orientation local (in an oriented manifold)      201.N
Orientation manifold      201.N
Orientation negative (of an oriented manifold)      105.F
Orientation opposite (of oriented atlases)      105.F
Orientation positive (of an oriented manifold)      105.F
Orientation same (of oriented atlases)      105.F
Orientation sheaf      201.R
Orientation-preserving mapping      99.A
Orientation-reversing mapping      99.A
Oriented atlas (of an orientable differentiable manifold)      105.F
Oriented cobordism class      114.H
Oriented cobordism group      114.H
Oriented differentiable structures, group of (on the combinatorial sphere)      114.I
Oriented element (in a covering manifold)      110.A
Oriented G-manifold      431.E
Oriented graph      186.B
Oriented manifold      105.F 201.N
Oriented manifold integrals over      105.T
Oriented pseudomanifold      65.B
Oriented pseudomanifold coherently      65.B
Oriented q-simplex      201.C
Oriented real hypershpere      76.A
Oriented segment      442.A
Oriented simplicial chain complex      201.C
Oriented singular r-simplex of class $C^\infty$      105.T
Oriented tangent line      76.B
Origin (of a Euclidean space)      140
Origin (of a projective frame)      343.C
Origin (of an affine space)      7.C
Orihara, Masae(1915-)      310.r
Orlicz space      168.B
Orlicz — Pettis theorem      443.D
Orlicz, Wladyslaw(1903-)      168.B 443.D
Ornstein — Uhlenbeck Brownian motion      45.I
Ornstein, Donald S.(1934-)      5.G 136.B 136.C 136.E—G 136.r 162 213.E 213.F
Ornstein, Leonard Salomon(1880-1941)      45.I
Ortega, James McDonogh(1932-)      301.r
Orthant, positive      89.G
Orthochronous      258.A
Orthocomplement (of a subspace of a linear space)      139.G
Orthogonal (block design)      102.J
Orthogonal (elements of a ring)      368.B
Orthogonal (functions)      317.A
Orthogonal (in a Hilbert space)      197.C
Orthogonal (in Euclidean geometry)      139.E 139.G
Orthogonal (linear subspaces)      256.G
Orthogonal array      102.L
Orthogonal complement (of a subset of a Hilbert space)      197.E
Orthogonal component (of an element of a linear space)      139.G
Orthogonal coordinate system adapted to (a flag)      139.E
Orthogonal curvilinear coordinate system      App. A Table
Orthogonal curvilinear coordinates      90.C
Orthogonal expansion      317.A
Orthogonal for a finite sum      19.G
Orthogonal fractional factorial design      102.I
Orthogonal frame      111.B 139.E
Orthogonal frame bundle      364.A
Orthogonal frame bundle tangent      364.A
Orthogonal function(s)      317 App. Table
Orthogonal function(s) Haar system of      317.C
Orthogonal function(s) Rademacher system of      317.C
Orthogonal function(s), Walsh’s system of      317.C
Orthogonal group      60.I 139.B 151.I
Orthogonal group (over a noncommutative group)      60.O
Orthogonal group complex      60.I
Orthogonal group complex special      60.I
Orthogonal group infinite      202.V
Orthogonal group over K with respect to Q      60.K
Orthogonal group pair      422.I
Orthogonal group proper      60.I 258.A
Orthogonal group reduced      61.D
Orthogonal group special      60.I
Orthogonal k-frame (in $\mathbf{R}^n$)      199.B
Orthogonal matrix      269.J
Orthogonal matrix complex      269.J
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте