|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
Предметный указатель |
Lens, Luneburg’s 180.A
Lenstra, J.K. 376.r
Leon, Jeffrey S. 151.I
Leontief, Wassily W.(1906-) 255.E
Leontovich, A.M. 420.G
Leopoldt, Heinrich Wolfgang(1927-) 14.D 14.U 450.A 450.J
Leopoldt’s conjecture 450.J
Leptons 132.B
Leray — Hirsch theorem 201.J
Leray — Schauder degree 286.D
Leray — Schauder fixed-point theorem 286.D 323.D
Leray, Jean(1906-) 20 112.B 125.A 146.A 148.A 148.E 200.J 201.J 204.B 204.D 204.r 240.r 286.C 286.D 321.G 323.D 325.I 325.J 325.r 383.J 383.r 426
Lerner, R.G. 414.r
LeRoy, Edouard(1870-1954) 379.S
Lesley, Frank David 275.C
Lettenmeyer, Fritz(1891-1953) 254.D 289.D 314.A
Letter (= variable) 369.A
Letter (in information theory) 63.A 213.B
Level test 400.A
Level test minimax 400.F
Level test most stringent 400.F
Level test unbiased 400.C
Level test uniformly most powerful (UMP) invariant 400.E
Level test uniformly most powerful (UMP) unbiased 400.C
Level (of a factor) 102.H
Level (of a modular form) 32.C
Level (of a modular function) 32.C
Level (of a principal congruence subgroup) 122.D
Level (of a test) 400.A
Level (of a tolerance region) 399.R
Level (of an orthogonal array) 102.L
Level average outgoing quality 404.C
Level confidence 399.Q
Level n structure (on an Abelian variety) 3.N
Level set (of a -function) 279.D
Level surface 193.J
Levelt, Antonius H.M. 428.r
Levi condition 321.G 325.H
Levi decomposition (on algebraic groups) 13.Q
Levi decomposition (on Lie algebras) 248.F
Levi form 344.A
Levi formgeneralized 274.G
Levi problem 21.I 21.F
Levi pseudoconvex domain 21.I
Levi pseudoconvex domain locally 21.I
Levi subgroup 13.Q
Levi, Eugenio Elia(1883-1917) 13.Q 21.F 21.I 21.Q 112.D 188.r 248.F 274.G 282 321.G 323.B 325.H 344.A
Levi, Friedrich Wilhelm(1888-1966) 2.E 122.B
Levin, Viktor Iosifovich(1909-) 198.r 211.r
Levine, Jerome Paul(1937-) 114.D 235.G
Levinson, Norman(1912-1975) 107.r 123.B 160.G 252.r 253.r 254.r 314.C 314.r 315.r 316.r 394.r 450
Levitan — Marchenko equation, Gel’fand- (for a nonlinear lattice) 287.C
Levitan — Marchenko equation, Gel’fand- (for KdV equations) 387.D
Levitan, Boris Moiseevich(1914-) 112.O 287.C 315.r 375.G 387.D
Levi—Civita connection 364.B
Levi—Civita, parallel in the sense of 111.H
Levi—Civita, Tullio(1873-1941) 80.A 80.K 109.* 109.r 364.B 420.F
Levy canonical form 341.G
Levy continuity theorem 341.F
Levy distance 341.F
Levy measure 5.E
Levy process 5.B
Levy theorem, Wiener — 159.I
Levy — Ito theorem (on Levy processes) 5.E
Levy, Azriel(1934-) 22.F 33.F 33.r 356.G
Levy, Paul(1886-1971) 5.B 5.E 5.r 45.A 45.E 45.G 45.I 45.r 115.r 159.I 176.A 176.E 176.F 192.N 260.J 261.A 262.A 341.E—G 342.D 406.F 407.A 407.B
Lewin, L. 167.r
Lewis, Daniel Ralph(1944-) 443.A
Lewis, Donald J.(1926-) 4.E 118.D 118.F
Lewis, Richard M. 127.G
Lewy — Mizohata equation 274.G
Lewy, Hans(1904-) 112.C 274.G 274.I 275.B 300.r 304.F 320.I 323.I 334.F
lexander cohomology group, relative 201.M
Lexicographic linear ordering 248.M
Lexicographic ordering 311.G
Li Chih(1192-1279) 57.B
Li, Peter Wai-Kwong(1952-) 391.D 391.N
Li, Tien-Yien(1945-) 126.N 303.G
Li, Yen(1892-1963) 57.r
Liability reserve 214.B
Liao, San Dao(1920-) 126.J
Lichnerowicz, Andre(1915-) 80.r 152.C 359.r 364.F 364.H 364.r 391.D
Lichtenstein, Leon(1878-) 217.r 222.r
Lickorish, William Bernard Raymond 114.L 154.B
Lie algebra(s) 248 App. Table
Lie algebra(s) (of a Lie group) 249.B
Lie algebra(s) (of an algebraic group) 13.C
Lie algebra(s) Abelian 248.C
Lie algebra(s) adjoint 248.B
Lie algebra(s) algebraic 13.C
Lie algebra(s) classical compact real simple 248.T
Lie algebra(s) classical complex simple 248.S
Lie algebra(s) compact real 248.P
Lie algebra(s) compact real simple App. A Table
Lie algebra(s) complex 248.A
Lie algebra(s) complex (of a complex Lie group) 249.M
Lie algebra(s) complex simple App. A Table
Lie algebra(s) exceptional compact real simple 248.T
Lie algebra(s) exceptional complex simple 248.S
Lie algebra(s) general linear 248.A
Lie algebra(s) isomorphic 248.A
Lie algebra(s) nilpotent 248.C
Lie algebra(s) noncompact real simple App. A Table
Lie algebra(s) of derivations 248.H
Lie algebra(s) quotient 248.A
Lie algebra(s) real 248.A
Lie algebra(s) reductive 248.G
Lie algebra(s) restricted 248.V
Lie algebra(s) semisimple 248.E
Lie algebra(s) simple 248.E
Lie algebra(s) solvable 248.C
Lie derivative 105.O 105.Q
Lie fundamental theorem (on a local Lie group of local transformations) 431.G
Lie group(s) 249 423.M
Lie group(s) Abelian 249.D
Lie group(s) Banach 286.K
Lie group(s) classical compact simple 249. L
Lie group(s) classical complex simple 249.M
Lie group(s) commutative 249.D
Lie group(s) complex 249.A
Lie group(s) exceptional compact simple 249.L
Lie group(s) exceptional complex simple 249.M
Lie group(s) isomorphic 249.N
Lie group(s) local 423.L
Lie group(s) local (of local transformations) 431.G
Lie group(s) nilpotent 249.D
Lie group(s) quotient 249.G
Lie group(s) semisimple 249.D
Lie group(s) simple 249.D
Lie group(s) simply connected covering 249.C
Lie group(s) solvable 249.D
Lie group(s) topology of, and homogeneous spaces 427
Lie group(s), direct product of 249.H
Lie line-sphere transformation 76.C
Lie minimal projection 76.B
Lie subalgebra 248.A
Lie subalgebra, associated with a Lie subgroup 249.D
Lie subgroup (of a Lie group) 249.D
Lie subgroup connected 249.D
Lie theorem (on Lie algebras) 248.F
Lie transformation (in circle geometry) 76.C
Lie transformation group (of a differentiable manifold) 431.C
Lie, M.S. 247
Lie, Marius Sophus(1842-1899) 13.C 13.F 76.B 76.C 105.O 105.Q 107.B 109.O 109.Q 137 139.B 183 190.Q 247 248.A 248.B 248.F 248.H 248.P 248.S 248.T 248.V 248.r 249.A—D 249.G 249.H 249.L 249.M 249.V 249.r 267 286.K 313.D 406.G 431.C 431.G 437.U
Lie-Kolchin theorem (on solvable algebraic groups) 13.F
Lieb, Elliott Hershel(1932-) 212.B 212.r 402.r
Lieb, Ingo(1939-) 164.K
Lieberman, David Ira(1941-) 16.R 23.G
Lieberman, Gerald J.(1925-) STR
Liebmann, Karl Otto Heinrich(1874-1939) 111.I 365.J
| Lienard differential equation 290.C
Lienard, Alfred 290.C
Liepmann, Hans Wolfgang(1914—) 205.r
Lies over (of a compactification) 207.B
Lifetime 260.A 261.B
Lifetime (of a particle by a scattering) 132.A
Lifshits, Evgenii Mikhailovich(1915-) 130.r 150.r 205.r 259.r 402.r
Lift (along a curve in a covering surface) 367.B
Lift (of a differentiable curve) 80.C
Lift (of a vector field) 80.C
Lift inflation 200.M
Lifting (in nonstandard analysis) 293.D
Lifting theorem 251.M
Liggett, Thomas Milton(1944-) 162 286.X 340.r
Light cone 258.A
Lighthill method 25.B
Lighthill — Kuo (P.L.K.) method, Poincare — 25.B
Lighthill, Michael James(1924-) 25.B 25.r 160.r 205.r 446.r
Lightlike 258.A 359.B
Ligocka, Ewa(1947-) 344.D
Likelihood 374.J
Likelihood equation 399.M
Likelihood estimating function 399.M
Likelihood estimator, maximum 399.M
Likelihood function 374.J 399.M
Likelihood method, maximum 399.M
Likelihood ratio 400.I
Likelihood ratio monotone 374.J
Likelihood ratio test 400.I
Lill 19.B
Limacon of Pascal 93.H
Liminal C*-algebra 36.H
Limit (of a function) 87.F
Limit (of a mapping) 87.F
Limit (of a net) 87.H
Limit (of a sequence of lattices) 182.B
Limit (of a sequence of points) 87.E 273.D
Limit (of a sequence of real numbers) 87.B 355.B
Limit (of a sequence of sets) 270.C
Limit (of a spectral sequence) 200.J
Limit (of an indeterminate form) 106.E
Limit Banach 37.F
Limit circle type (boundary point) 112.I
Limit confidence 399.Q
Limit cycle 126.I
Limit direct (of a direct system) 210.B
Limit distribution 250.A
Limit elastic 271.G
Limit formula, Kronecker’s 450.B
Limit generalized 37.F
Limit in the mean 168.B
Limit inductive (group) 210.C
Limit inductive (in a category) 210.D
Limit inductive (of an inductive system) 210.B
Limit inductive (of sheaves) 383.I
Limit inductive (of topological spaces) 425.M
Limit inductive (space) 210.C
Limit inferior (event) 342.B
Limit inferior (of a sequence of real numbers) 87.C
Limit inferior (of a sequence of sets) 270.C
Limit inverse (of an inverse system) 210.B
Limit lower (function) 84.C
Limit lower (of a Riemann integral) 216.A
Limit lower (of a sequence of real numbers) 87.C
Limit lower control 404.B
Limit on the left (of a real-valued function) 87.F
Limit on the right (of a real-valued function) 87.F
Limit order (of an order convergent sequence) 310.C
Limit ordinal number 312.B
Limit point - 126.D
Limit point - 126.D
Limit point (of a discontinuous group) 122.C
Limit point (of a sequence) 87.B 87.E
Limit point negative 126.D
Limit point positive 126.D
Limit point type (boundary point) 112.I
Limit projective (group) 210.C
Limit projective (in a category) 210.D
Limit projective (of a family of continuous homomorphisms) 423.K
Limit projective (of a projective system) 210.B
Limit projective (space) 210.C
Limit set 234.A
Limit set - 126 D
Limit set - 126.D
Limit set first negative prolongational 126.D
Limit set first positive prolongational 126.D
Limit set residual 234.E
Limit strictly inductive (of a sequence of locally convex spaces) 424.W
Limit superior (event) 342.B
Limit superior (of a sequence of real numbers) 87.C
Limit superior (of a sequence of sets) 270.C
Limit theorem(s) 250.A
Limit theorem(s) basic 260.C
Limit theorem(s) central 250.B
Limit theorem(s) in probability theory 250
Limit theorem(s) local 250.B
Limit thermodynamic 402.G
Limit tolerance 399.R
Limit upper (function) 84.C
Limit upper (of a Riemann integral 216.A
Limit upper (of a sequence of real numbers) 87.C
Limit upper control 404.B
Limit value (of a mapping) 87.F
Limited information maximum likelihood method 128.C
Limiting absorption principle 375.C
Limiting hypersphere (in hyperbolic geometry) 285.C
Lin Jiguan 108.B
Lin Shu 63.r
Lin, C.C. 433.r
Lind, Douglas A.(1946-) 136.E
Lindeberg condition 250.B
Lindeberg, J.W. 250.B
Lindeloef asymptotic value theorem 43.C
Lindeloef hypothesis 123.C
Lindeloef space 425.S
Lindeloef theorem 43.F
Lindeloef theorem Phragmen — 43.C
Lindeloef, Ernst Leonhard(1870-1946) 43.C 43.H 123.C 425.S
Lindemann — Weierstrass theorem 430.D
Lindemann, Carl Louis Ferdinand von(1852-1939) 179.A 332 430.A 430.D
Lindenstrauss, Joram(1936-) 37.M 37.N 37.r 168.r 443.H
Lindley, Dennis Viktor(1923-) 401.r
Lindow, M. App.A Table
Lindstedt — Poincare method 290.E
Line bundle 147.F
Line bundle complex 72.F
Line bundle complex (determined by a divisor) 72.F
Line bundle tautological 16.P
Line coordinates (of a line) 343.C
Line element 111.C
Line element characteristic 82.C
Line element of higher order, space of 152.C
Line element projective 110.B
Line(s) 7.A 93.A 155.B
Line(s) (of a graph) 186.B
Line(s) broken 155.F
Line(s) complexes, linear 343.E
Line(s) concurrent (in projective geometry) 343.B
Line(s) congruences, linear 343.E
Line(s) generating (of a circular cone) 78.A
Line(s) generating (of a quadric hypersurface) 343.E
Line(s) generating (of a quadric surface) 350.B
Line(s) generating (of a ruled surface) 111.I
Line(s) geodesic 178.H
Line(s) Green 193.J
Line(s) Green, regular 193.J
Line(s) half- 155.B
Line(s) long 105.B
Line(s) normal (to a curve) 93.G
Line(s) of curvature (on a surface) 111.H
|
|
|
Реклама |
|
|
|