Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Machine-language program      75.C
Machover, Maurice(1931-)      356.G
Mack method, Garside — Jarratt —      301.N
Mack, C      301.N
Mackay, Alan L.      92.F
MacKenzie, Robert E.(1920-)      279.C
Mackey space      424.N
Mackey theorem      424.M
Mackey topology      424.N
Mackey — Arens theorem      424.N
Mackey, George Whitelaw(1916-)      36.G 424.M 424.N 437.EE
MacLane complexes, Eilenberg —      70.F
MacLane space, Eilenberg —      70.F
MacLane spectrum, Eilenberg —      202.I
MacLane, Saunders(1909-)      8.r 52.r 70.F 70.r 91.r 103.r 200.M 200.r 201.G 202.T 277.r 305.A
Maclaurin formula, Euler —      379.J
Maclaurin, Colin(1698-1746)      20 266 379.J
MacMahon, Major Percy Alexander(1854-1929)      328 330.r
MacPherson, Robert Duncan(1944-)      366.E 336.r
MacRobert, Thomas Murray      393.r
Macroeconomic data      128.A
Macroscopic causality (of S-matrix)      386.C
Madansky, Albert      408.r
Maeda, Fumi-Yuki(1935-)      207.D 207.r
Maeda, Fumitomo(1897-1965)      162
Maeda, Yoshiaki(1948-)      364.G
Maehara, Shoji(1927-)      411.J 411.r
Magenes, Enrico(1923-)      112.E 323.r
Magentic viscosity      259
Magidor, Menachem      33.r
Magnetic field      130.A
Magnetic flux density      130.A
Magnetic group      92.D
Magnetic induction      130.A
Magnetic permeability      130.B
Magnetic polarization      130.A
Magnetic quantum number, orbital      351.E
Magnetic Reynolds number      259
magnetic susceptibility      130.B
Magnetic wave      130.B
Magnetic wave transverse      130.B
Magnetofluid dynamics      259
Magnetohydrodynamics      259
Magnetostatics      130.B
Magnitude (of a vector)      442.B
Magnus, Wilhelm(1907-)      161.B 161.r 389.r App.A Table
Mahalanobis generalized distance      280.E
Mahalanobis, Prasanta Chandra(1893-1972)      280.E
Mahler, Kurt(1903-)      182.r 430.B 430.C
Mahlo, p.      33.r
Main classes      241. A
Main effect      102.H
Main theorem (in class field theory)      59.C
Main theorem Zariski’s      16.I
Mainardi equations, Codazzi —      111.H App. Table
Mainardi, Gaspare(1800-1879)      111.H App.A Table
Maitra, Ashok P.      22.E 396.r
Majima, Hideyuki(1952-)      428.H
Major arc      4.B
Major axis (of an ellipse)      78.C
Major function      100.F
Majorant (of a sequence of functions)      435.A
Majorant harmonic (of a subharmonic function)      193.S
Majorant series      316.G 435.A
Majorant, method of      316.G
Majorizing function, right      316.E
Makarov, Vitalii Sergeevich(1936-)      122.G
Malcolm, Donald G.      376.r
Malfatti problem (in geometric construction)      179.A
Malfatti.Gian Francesco(1731-1807)      179.A
Malgrange theorem, Ehrenpreis —      112.B
Malgrange, Bernard(1928-)      58.C 58.E 68.F 112.B 112.C 112.R 125.W 320.H 418.r 428.H
Malhavin, Paul(1925-)      115.D 115.r 192.M 406.E 406.r
Malmquist, Johannes(1882-1952)      254.D 288.B 288.C 288.r 289.B—D 314.A
Malus theorem      180.A
Malus, Etienne Louis(1775-1812)      180.A
Mal’tsev theorem, Wedderburn- (on algebras)      29.F
Mal’tsev — Iwasawa theorem, Cartan- (on maximal compact subgroups)      249.S
Mal’tsev, Anatolii Ivanovich(1909-1967)      29.F 249.S 276.D
Mandelbaum, Richard(1946-)      114.r
Mandelbrojt, Szolem(1899-1983)      58.F 134.C 134.r 339.A 339.r
Mandelbrot, Benoit B.(1924-)      246.K 433.r
Mandelstam representation      132.C
Mandelstam, Stanley(1928-)      132.C
Mane, Ricardo      126.J
Mangasarian, Olvi L.(1934-)      292.D 292.r
Mangoldt function      123.B
Mangoldt, Hans Carl Friedrich von(1854-1925)      123.B 450.B
Manifold(s) $C^r$-      105.D
Manifold(s) $C^r$-, with boundary      105.E
Manifold(s) $C^r$-, without boundary      105.E
Manifold(s) $SC^p$-      178.G
Manifold(s) $\pi$-      114.I
Manifold(s) almost complex      72.B
Manifold(s) almost contact      110.E
Manifold(s) almost parallelizable      114.I
Manifold(s) at a point      178.G
Manifold(s) Banach      105.Z 286.K
Manifold(s) Blaschke manifold      178.G
Manifold(s) center, theorem      286.V
Manifold(s) characteristic (of a partial differential equation)      320.B
Manifold(s) closed      105.B
Manifold(s) coherently oriented pseudo-      65.B
Manifold(s) combinatorial      65.C
Manifold(s) compact $C^r$-      105.D
Manifold(s) complex analytic      72.A
Manifold(s) conic Lagrange      345.B
Manifold(s) conic Lagrangian      274.C
Manifold(s) contact      110.E
Manifold(s) covering      91.A
Manifold(s) covering differentiable      91.A
Manifold(s) differentiable, of class $C^r$      105.D
Manifold(s) differentiable, with boundary of class $C^r$      105.E
Manifold(s) fibered      428.F
Manifold(s) Finsler      286.L
Manifold(s) flag      199.B
Manifold(s) Frechet      286.K
Manifold(s) G-      431.C
Manifold(s) group (of a Lie transformation)      110.A
Manifold(s) h-cobordant oriented      114.I
Manifold(s) Hilbert      105.Z 286.K
Manifold(s) Hodge      232.D
Manifold(s) homology      65.B
Manifold(s) Hopf      232.E
Manifold(s) hyperbolic      21.O 235.E
Manifold(s) integral      428.A 428.B 428.D
Manifold(s) irreducible 3-      65.E
Manifold(s) k-dimensional integral      191.I
Manifold(s) Kaehler      232
Manifold(s) nontrivial 3-      65.E
Manifold(s) ordinary integral (of a differential ideal)      428.E
Manifold(s) orientable ($C^r$-manifold)      105.F
Manifold(s) orientation      201.N
Manifold(s) oriented      105.F 201.N
Manifold(s) oriented G-      431.E
Manifold(s) paracompact $C^r$-      105.D
Manifold(s) parallelizable      114.I
Manifold(s) PL-      65.C
Manifold(s) Poincare      105.A
Manifold(s) prime 3-      65.E
Manifold(s) proper flag      199.B
Manifold(s) pseudo-      65.B
Manifold(s) pseudo-Hermitian      344.F
Manifold(s) Q-      382.D
Manifold(s) real analytic      105.D
Manifold(s) regular integral (of a differential ideal)      428.E
Manifold(s) s-parallelizable      114.I
Manifold(s) singular integral (of a differential ideal)      428.E
Manifold(s) smooth      105.D 114.B
Manifold(s) space-time      359.D
Manifold(s) stable      126.G 126.J
Manifold(s) stably almost complex      114.H
Manifold(s) stably parallelizable      114.I
Manifold(s) Stein      21.L
Manifold(s) symplectic      219.C
Manifold(s) topological      105.B
Manifold(s) triangulated      65.B
Manifold(s) unstable      126.G 126.J
Manifold(s) visibility      178.F
Manifold(s) weakly 1-complete      21.L
Manifold(s) weakly almost complex      114.H
Manifold(s) with a handle attached by f      114.F
Manifold(s) with boundary      105.B
Manifold(s) with Euclidean connection      109
Manifold(s) without boundary      105.B
Manifold(s), characteristic classes of      56.F
Manin connection, Gauss- (of a variety)      16.V
Manin, V.G.      80.r
Manin, Yurii Ivanovich(1937-)      16.J 16.V 80.r 118.E 387.r 450.J 450.M
Mann — Whitney U-test      371.C
Mann, Henry Berthold(1905-)      4.A 371.A 371.C 421.r
Mann, Larry N.(1934-)      364.F
Manna, Zohar(1939-)      75.r
Mannheim curve      111.F
Mannheim, Amedee(1831-1906)      111.F
Manning, Anthony Kevin(1946-)      51.r 126.J 126.K
MANOVA (multivariate analysis of variance)      280.B
Mansfield, Richard B.(1941-)      22.F
Mantissa (of the common logarithm)      131.C
Many body problem      402.F 420.A
Many-valued (analytic function)      198.J
Many-valued function      165.B
Many-valued logic      411.L
MAP      381.C see
Map bundle      147.B
Map covering      91.A
Map cubic      157.B
Map equivariant      431.A
Map first-return      126.C
Map G-      431A
Map Gauss      111.G
Map Kodaira — Spencer      72.G
Map linear fiber      114.D
Map normal      114.J
Map PL      65.A
Map Poincare      126.C
Map time-one      126.C
Map trivalent      157.B
Mapping      381.C
Mapping $C^r$-      105.J
Mapping $c_1$-      237.G
Mapping A-balanced      277.J
Mapping affine      7.E
Mapping alternating multilinear      256.H
Mapping analytic      21.J
Mapping antiholomorphic      195.B
Mapping antisymmetric multilinear      256.H
Mapping biadditive      277.J
Mapping biholomorphic      21.J
Mapping bijective      381.C
Mapping bilinear      256.H 277.J
Mapping birational      16.I
Mapping biregular (between prealgebraic varieties)      16.C
Mapping Borel isomorphic      270.C
Mapping bundle      147.B
Mapping CE      382.D
Mapping cellular (between cell complexes)      70.D
Mapping chain      200.C 201.B
Mapping chain (between chain complexes)      201.B
Mapping characteristic (in the classification theorem of fiber bundles)      147.G
Mapping class      202.B
Mapping classifying      147.G
Mapping closed      425.G
Mapping cochain      200.F 201.H
Mapping complete      241.C
Mapping cone      202.E
Mapping cone reduced      202.F
Mapping conformal      198 A
Mapping conjugation (of a Hopf algebra)      203.E
Mapping constant      381.C
Mapping continuous      425.G
Mapping covering      91.A
Mapping cylinder      202.E
Mapping degenerate      208.B
Mapping degree      99.A
Mapping diagonal (of a graded coalgebra)      203.B 203.F
Mapping differentiable, of class $C^r$      105.J
Mapping dual (of a linear mapping)      256.G
Mapping duality      251.J
Mapping equivariant      431.A
Mapping essential      202.B
Mapping exponential      178.A 249.Q 364.C
Mapping extremal horizontal slit      367.G
Mapping extremal quasiconformal      352.C
Mapping extremal vertical slit      367.G
Mapping first-return      126.C
Mapping Fredholm      286.E
Mapping G-      362.B 431.A
Mapping Gauss (in geometric optics)      180.B
Mapping generalized conformal      246.I
Mapping harmonic      195.B
Mapping hereditarily quotient      425.G
Mapping holomorphic      21.J 72.A
Mapping homological      200.C
Mapping homotopy-associative      203.D
Mapping Hopf      147.E
Mapping identity      381.C
Mapping inclusion      381.C
Mapping inverse      381.C
Mapping inverse, theorem      208.B
Mapping isometric      111.H 273.B
Mapping Kodaira — Spencer      72.G
Mapping linear (between linear spaces)      256.B
Mapping linear (between polyhedrons)      70.C
Mapping linear fiber      114.D
Mapping meromorphic      23.D
Mapping monotone      311.E
Mapping multilinear      256.H
Mapping nondegenerate holomorphic (between analytic spaces)      23.C
Mapping nonexpansive      286.B
Mapping nonsingular, of class $C^1$      208.B
Mapping normal      114.J
Mapping normal coordinate      364.C
Mapping of bounded variation      246.H
Mapping of class $C^r$      208.B
Mapping of group algebra      192.Q
Mapping one-to-one      381.C
Mapping onto      381.C
Mapping open      425.G
Mapping order-preserving      311.E
Mapping orientation-preserving      99.A
Mapping orientation-reversing      99.A
Mapping partial (of a mapping)      381.C
Mapping perfect      425.W
Mapping perspective (in projective geometry)      343.B
Mapping piecewise affine      192.Q
Mapping piecewise linear (between polyhedra)      70.C
Mapping PL      65.A
Mapping Poincare      126.C 126.G
Mapping product      425.K
Mapping projective (in projective geometry)      343.B
Mapping proper      425.W
Mapping purely inseparable rational      16.I
Mapping quasiconformal      352.B
Mapping quasiperfect      425.CC
Mapping quotient      425.G
Mapping rational      16.I
Mapping regular (between prealgebraic varieties)      16.C
Mapping regular, of class $C^1$      208.B
Mapping s.s. (semisimplicial)(between s.s. complexes)      70.E
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте