Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Mattuck, Arthur Paul(1930-)      118.E 450.P
Matuda, Tizuko(1923-)      30.r 288.B 288.r 289.r
Matumoto, TAKAO(1946-)      65.C 114.K
Matunaga Yosisuke(1692?-1747)      230 332
Matuzaka, Kazuo(1927-)      7.r 343.r
Matveev, Vladimir Borisovich      387.r
Maunder, Charles Richard Francis      201.r
Maupertuis principle      180.A
Maupertuis, Pierre Louis Moreau de(1698-1759)      180.A 441.B
Maurer — Cartan, differential form of      249.R
Maurer — Cartan, system of differential equations of      249.R
Maurer, Ludwig(1859-?)      249.R
Maurus(c.780-c.856)      372
Mautner, Friedrich Ignaz(1921-)      136.G 308.G 437.EE
Mawhin, Jean      290.r
Maxfield, John E.(1927-)      NTR
Maximal (hypersurface in Minkowski space)      275.H
Maximal (ideal)      368.F
Maximal (in prediction theory)      395.D
Maximal (Riemann surface)      367.F
Maximal concentration function      341.E
Maximal condition      311.C
Maximal deficiency (of an algebraic surface)      15.E
Maximal dilatation      352.B
Maximal dissipative operator      251.J
Maximal element (in an ordered set)      311.B
Maximal entropy      136.C 136.H
Maximal ergodic lemma      136.B
Maximal filter      87.I
Maximal function nontangential      168.B
Maximal function radial      168.B
Maximal ideal      67.C 368.F
Maximal ideal space (of a Banach algebra)      36.E
Maximal ideal with respect to S      67.C
Maximal independent system (of an additive group)      2.E
Maximal inequality (= maximal ergodic lemma)      136.B
Maximal invariant statistic      396.I
Maximal k-split torus      13.Q
Maximal operator      112.E
Maximal order      27.A
Maximal prime divisor (of an ideal)      67.F
Maximal separable extension (of a field)      149.H
Maximal toroidal subgroup (of a compact Lie group)      248.X
Maximal torsion subgroup (of an Abelian group)      2.A
Maximal torus (of a compact Lie group)      248.X
Maximally almost periodic group      18.I
Maximally overdetermined (= holonomic)      274.H
Maximum element (in an ordered set)      311.B
Maximum likelihood estimator      399.M
Maximum likelihood method      399.M
Maximum likelihood method limited information      128.C
Maximum modulus principle (for a holomorphic function)      43.B
Maximum modulus principle Cartan      338.L
Maximum modulus principle complete      338.M
Maximum modulus principle local      164.C
Maximum principle (for analytic functions)      43.B
Maximum principle (for harmonic functions)      193.E
Maximum principle (for minimal surface)      275.B
Maximum principle (for parabolic operators)      327.D
Maximum principle (in control theory)      86.F
Maximum principle dilated (in potential theory)      338.C
Maximum principle entropy      419.A
Maximum principle first (in potential theory)      338.C
Maximum principle Frostman’s      338.C
Maximum principle Hopf (for equations of elliptic type)      323.C
Maximum principle strong (for equations of elliptic type)      323.C
Maximum principle Ugaheri’s      338.C
Maximum return      127.B
Maximum solution (of a scalar equation)      316.E
Maximum spectral measure      390.G
Maximum, relative (of a function)      106.L
Maximum-flow minimum-cut theorem      281.C
Maximum-flow problem      281.C
Maximum-separation minimum-distance theorem      281.C
Maxwell convention      51.F
Maxwell equations      130.A
Maxwell fisheye      180.A
Maxwell relations      419.B
Maxwell stress tensor      130.A
Maxwell theorem (on spherical functions)      393.D
Maxwell — Boltzmann distribution law      402.B
Maxwell, Albert Ernest      280.r 346.F 346.r
Maxwell, George(1946-)      92.r
Maxwell, James Clerk(1831-1879)      51.F 130.A 150.A 180.A 393.D 402.B 402.H 419.B
Maxwell, William L.(1934-)      376.r
May, J.Peter(1939-)      70.r
May, Kenneth Ownsworth(1915-1977)      157.r
May, Robert McCredie(1936-)      126.N 263.D 263.r
Mayer — Vietoris exact sequence (for a proper triple)      201.C
Mayer — Vietoris exact sequence relative      201.L
Mayer, Dieter H.      402.G 402.r
Mayer, Karl Heinz(1936-)      431.r
Mayer, Walter      111.r 201.C 201.E 201.L
Maynard, Hugh B.      443.H
Mazet, Edmond      109.r 115.r 391.r
Mazur theorem      37.F
Mazur theorem Gel’fand —      36.E
Mazur, Barry C.(1937-)      16.r 37.C 65.C 65.G 114.C 126.K 426 450.J 450.r
Mazur, Stanislaw(1905-1981)      36.E
Mazurkiewicz, Stefan(1888-1945)      22.C 93.D 426
McAndrew, Michael H.      126.K 136.H
McAuley, Van A.      301.E
McBride, Elna Browning      177.r
McCarthy, John(1927-)      31.C
McCoy, Barry Malcolm(1940-)      402.r
McCoy, Neal Henry(1905-)      368.r
McCracken, Marsden      126.r
McDuff, Dusa Waddington(1945-)      308.F
McGregor, James      263.E
McKay, John      151.I
McKcan, Henry P., Jr.(1930-)      41.C 45.I 45.r 115.A 115.r 176.F 176.K 260.J 261.A 261.r 323.M 340.F 387.E 387.r 391.B 391.C 391.K 391.r 406.r 407.B
McLachlan, Norman William(1888-)      268.r
McLaughlin, Jack(1923-)      151.I
McMillan, Brockway(l915-)      136.E 213.D
McShane, Edward James(1904-)      310.I 310.r
Meager set      425.N
Meager set non-      425.N
Mean $\alpha$-trimmed      371.H
Mean (of a probability distribution)      341.B
Mean (of a random variable)      342.C
Mean (of a statistical data)      397.C
Mean (of a weakly stationary process)      395.A
Mean (of an almost periodic function)      18.B 18.E
Mean (of numbers or a function)      211.C
Mean absolute deviation      397.C
Mean anomaly      309.B
Mean arithmetic      211.C 397.C
Mean arithmetico-geometric      134.B
Mean bounded, oscillation      168.B
Mean concentration function      341.E
Mean conditional (of a random variable)      342.E 397.I
Mean content (of a tolerance region)      399.R
Mean continuous in the      217.M 407.A
Mean convergence in the, of order p      168.B 342.D 407.A
Mean convergence in the, of power p      168.B
Mean curvature      111.H 364.D 365.D App. Table
Mean curvature total      365.O
Mean curvature vector      365.D
Mean energy      402.G
Mean entropy      402.G
Mean ergodic theorem      136.B
Mean Fejer      159.C
Mean free energy      340.B 402.G
Mean geometric      211.C
Mean geometrical      397.C
Mean harmonic      211.C 397.C
Mean limit in the      168.B
Mean moment about the (kth)      341.B
Mean motion      309.B
Mean number of sheets (of a covering surface of a Riemann sphere)      272.J
Mean of degree r (of a function with respect to a weight function)      211.C
Mean oval (of two ovals)      89.D
Mean p-valent, areally      438.E
Mean p-valued, circumferentially      438.E
Mean population      396.C
Mean recurrence time      260.C
Mean sample      396.C
Mean square error      399.E 403.E
Mean unbiased estimator      399.C
Mean unbiased, asymptotically      399.K
Mean value (of a continuous function on a compact group)      69.A
Mean value (of a weakly stationary process)      395.C
Mean value theorem (in differential calculus)      106.E
Mean value theorem (on harmonic functions)      193.E
Mean value theorem first (in the Riemann integral)      216.B
Mean value theorem second (for the Stieltjes integral)      94.C
Mean value theorem second (in the D-integral)      100.G
Mean value theorem second (in the Riemann integral)      216.B
Mean value theorem Siegel      182.E
Mean value theorem Vinogradov      4.E
Mean vector      341.B
Measurability      443.I
Measurability strong      443.I
Measurability theorem, Pettis      443.B
Measurable $\mathbf{\mathfrak{B}}$-      270.C
Measurable $\mu$-      270.D
Measurable (flow)      136.D
Measurable (in set theory)      33.F
Measurable (multivalued vector function)      443.I
Measurable (operator function)      308.G
Measurable (set)      270.D 270.G
Measurable (stochastic process)      407.A
Measurable (transformation)      136.B
Measurable (vector valued function)      443.B
Measurable absolutely      270.L
Measurable Baire      270.L
Measurable cardinal number      33.E
Measurable event      342.B
Measurable function      270.J
Measurable function $\mathbf{\mathfrak{B}}$-      270.J
Measurable function Baire      270.L
Measurable function Borel      270.J
Measurable function Lebesgue      270.J
Measurable function universally      270.L
Measurable Jordan      270.D 270.G
Measurable Lebesgue      270.G
Measurable nearly Borel      261.D
Measurable progressively (stochastic process)      407.A
Measurable real-valued (in set theory)      33.F
Measurable scalarly      443.I
Measurable space(s)      270.C
Measurable space(s) analytic      270.C
Measurable space(s) complete      270.D
Measurable space(s) isomorphic      398.D
Measurable space(s) standard      270.C
Measurable strongly      443.B 443.I
Measurable universally      270.L
Measurable vector function      308.G
Measurable weakly      443.B 443.I
Measurable with respect to $\mu*$      270.E
Measurable with respect to a family of random variables      342.C
Measure      270.D 270.G
Measure $\delta$-      270.D
Measure $\mathbf{\mathfrak{B}}$-regular      270.F
Measure $\sigma$-additive      270.D
Measure $\sigma$-finite      270.D
Measure algebra      192.O
Measure atomless probability      398.C
Measure Borel      270.G
Measure bounded      270.D
Measure canonical      115.B 260.G
Measure Caratheodory      270.E
Measure Caratheodory outer      270.E
Measure characteristic      407.D
Measure complete      270.D
Measure completely additive      270.D
Measure complex spectral      390.D
Measure convergence in      168.B
Measure distortion      213.E
Measure excessive      261.F
Measure finitely additive      270.D
Measure G-invariant      225.B
Measure Gaussian random      407.D
Measure generalized Lebesgue      270.E
Measure Gibbs      136.C
Measure Green      193.J
Measure Haar      225.C
Measure harmonic      120.C 169.B 207.B 260.I
Measure Hausdorff      169.D
Measure idempotent      192.P
Measure image      270.K
Measure inner harmonic      169.B
Measure invariant      136.B 255.B 260.A 260.I 261.F
Measure Jensen      164.K
Measure Jordan      270.D 270.G
Measure K-regular      270.F
Measure killing      115.B
Measure kinetic      228.A
Measure Lebesgue      270.G
Measure Lebesgue outer      270.G
Measure Lebesgue — Stieltjes      166.C 270.L
Measure left invariant Haar      225.C
Measure Levy      5.E
Measure Loeb      293.D
Measure Markov      136.D
Measure of an angle      139.D
Measure of association      397.K
Measure of genus (of a positive definite symmetric matrix)      348.K
Measure of length      139.C
Measure of location      397.C
Measure of variability      397.C
Measure orthogonal      164.C
Measure outer      270.E 270.G
Measure outer harmonic      169.B
Measure Plancherel (of a locally compact group)      437.L
Measure Poisson random      407.D
Measure positive Radon      270.I
Measure probability      341 342.B
Measure problem, invariant      136.C
Measure product      270.H
Measure quasi-invariant      225.J
Measure quotient      225.H
Measure Radon      270.G
Measure real spectral      390.D
Measure regular      270.F
Measure relatively invariant      225.H
Measure representing      164.C
Measure right invariant Haar      225.C
Measure signed      380.C
Measure smooth (for a Riemannian metric)      136.G
Measure smooth invariant      126.J
Measure space      270.D
Measure space $\sigma$-finite      270.D
Measure space bounded      270.D
Measure space complete      270.D
Measure space complete product      270.H
Measure space Lebesgue, with a finite (or ff-finite) measure      136.A
Measure space product      270.H
Measure spectral      390.D 390.K 395.B 395.C
Measure speed      115.B
Measure subinvariant      261.F
Measure superharmonic      260.I
Measure theory      270
Measure vector      443.G
Measure Weil      225.G
Measure Wiener      45.B 250.E
Measure-preserving (transformation)      136.B
Mechanics celestial      55.A
Mechanics classical      271.A
Mechanics classical statistical      402.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте