Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Riemann — Roch type, Hirzebruch theorem of      366.B
Riemann — Stieltjes integral      94.B 166.C
Riemann, G.F.B.      363
Riemann, G.F.B. P-function of      253.B
Riemann, Georg Friedrich Bernhard(1826-1866)      3.I 3.L 3.r 9.C 9.F 9.I 11.B—D 11.r 12.B 15.D 16.V 20 21.A 21.C 21.F 30.C 37.K 46.E 51.E 74.D 77.B 80.K 94.B 105.A 105.P 105.W 107.A 109 110.E 123.A 123.B 137 152.A 159.A 160.A 181 198.A 198.D 198.Q 199.A 216.A 217.J 237.G 253.B 253.D 267 274.G 275.A 285.A 286.L 323.E 325.D 334.C 344.A 363 364.A 364.B 364.D 365.A 366.A—D 367.A 367.B 367.E 379.C 379.S 412.A—D 412.J 413.* 416 426 447 450.A 450.B 450.I 450.Q App.A Tables 14.II 18.I
Riemannian connection      80.K 364.B
Riemannian connection, coefficients of      80.L
Riemannian curvature      364.D
Riemannian foliation      154.H
Riemannian geometry      137 App. Table
Riemannian homogeneous space      199.A
Riemannian homogeneous space symmetric      412.B
Riemannian manifold(s)      105.P 286.K 364
Riemannian manifold(s) flat      364.E
Riemannian manifold(s) irreducible      364.E
Riemannian manifold(s) isometric      364.A
Riemannian manifold(s) locally flat      364.E
Riemannian manifold(s) normal contact      110.E
Riemannian manifold(s) reducible      364.E
Riemannian metric      105.P
Riemannian metric pseudo-      105.P
Riemannian metric volume element associated with      105.W
Riemannian product (of Riemannian manifolds)      364.A
Riemannian space      364.A
Riemannian space irreducible symmetric      App. A Table
Riemannian space locally symmetric      App. A Table
Riemannian submanifold      365
Riemenschneider, Oswald W.(1941-)      232.r
Riesz (F. and M.) theorem      168.C
Riesz (F. and M.) theorem (on bounded holomorphic functions on a disk)      43.D
Riesz (F.) theorem (on $L_p$ functions)      317.B
Riesz convexity theorem      88.C
Riesz decomposition (in a Markov chain)      260.D
Riesz decomposition (representation)      197.F
Riesz decomposition of a superharmonic or subharmonic function      193.S
Riesz group      36.H
Riesz method of order k, summable by      379.R
Riesz method of summation of the kth order      379.R
Riesz potential      338.B
Riesz space      310.B
Riesz transform      251.O
Riesz — Fischer theorem      168.B 317.A
Riesz — Schauder theorem      68.E
Riesz — Thorin theorem      224.A
Riesz, Frigyes(Frederic)(1880-1956)      43.D 68.A 68.E 68.r 77.B 136.B 162 164.G 164.I 168.B 193.S 197.A 197.F 197.r 251.O 251.r 260.D 310.A 310.B 317.A 317.B 390.r 425.r
Riesz, Marcel(1886-1969)      43.D 88.C 121.r 125.A 164.G 164.I 224.A 338.B 379.R
Right $\mathfrak{o}_r$ ideal      27.A
Right A-module      277.D
Right adjoint functor      52.K
Right angle      151.D
Right annihilator (of a subset of an algebra)      29.H
Right Artinian ring      368.F
Right balanced (functor)      200.I
Right circular cone      350.B
Right conoid      111.I
Right continuous (function)      84.B
Right coset (of a subgroup of a group)      190.C
Right coset space (of a topological group)      423.E
Right decomposition, Peirce (in a unitary ring)      368.F
Right derivative      106.A
Right derived functor      200.I
Right differentiable      106.A
Right endpoint (of an interval)      355.C
Right equivalent      51.C
Right exact (functor)      200.I
Right G-set      362.B
Right global dimension (of a ring)      200.K
Right helicoid      111.I
Right ideal (of a ring)      368.F
Right ideal integral      27.A
Right injective resolution (of an A-module)      200.F
Right invariant Haar measure      225.C
Right invariant tensor field (on a Lie group)      249.A
Right inverse (of $df_1(0)$)      286.G
Right inverse element (of an element of a ring)      368.B
Right linear space      256.A
Right majorizing function      316.E
Right Noetherian ring      368.F
Right operation (of a set to another set)      409.A
Right order (of a g-lattice)      27.A
Right parametrix      345.A
Right projective space      343.H
Right quotient space (of a topological group)      423.E
Right regular representation (of a group)      362.B
Right regular representation (of an algebra)      362.E
Right resolution (of an A-module)      200.F
Right satellite      200.I
Right semi-integral      68.N
Right semihereditary ring      200.K
Right shunt      115.B
Right singular point (of a diffusion process)      115.B
Right superior function      316.E
Right translation      249.A 362.B
Right uniformity (of a topological group)      423.G
Right, limit on the      87.F
Right-adjoint (linear mapping)      256.Q
Rigid (characteristic class of a foliation)      154.G
Rigid (isometric immersion)      365.E
Rigid body      271.E
Rigidity (of a sphere)      111.I
Rigidity theorem      178.C
Rigidity theorem strong      122.G
Rigidity, modulus of      271.G
Riickert, Walter      23.B
Riley, Robert Freed(1935-)      235.E
Rim, Dock S.(1928-)      200.M
Ring homomorphism      368.D
Ring isomorphism      368.D
Ring operations      368.A
Ring(s)      368
Ring(s) adele (of an algebraic number field)      6.C
Ring(s) affine      16.A
Ring(s) anchor      410.B
Ring(s) Artinian      284.A
Ring(s) associated graded      284.D
Ring(s) basic (of a module)      277.D
Ring(s) Boolean      42.C
Ring(s) Burnside      431.F
Ring(s) category of      52.B
Ring(s) category of commutative      52.B
Ring(s) Chow (of a projective variety)      16.R
Ring(s) cobordism      114.H
Ring(s) coefficient (of a semilocal ring)      284.D
Ring(s) coefficient (of an algebra)      29.A
Ring(s) cohomology      201.I
Ring(s) cohomology, of an Eilenberg — MacLane complex      App. A Table
Ring(s) cohomology, of compact connected Lie groups      App. A Table
Ring(s) commutative      67 368.A
Ring(s) complete local      284.D
Ring(s) complete Zariski      284.C
Ring(s) completely integrally closed      67.I
Ring(s) completely primary      368.H
Ring(s) completion, with respect to an ideal      16.X
Ring(s) complex cobordism      114.H
Ring(s) coordinate (of an affine variety)      16.A
Ring(s) correspondence (of a nonsingular curve)      9.H
Ring(s) de Rham cohomology (of a differentiable manifold)      105.R 201.I
Ring(s) differential      113
Ring(s) differential extension      113
Ring(s) discrete valuation      439.E
Ring(s) division      368.B
Ring(s) endomorphism (of a module)      277.B 368.C
Ring(s) endomorphism (of an Abelian variety)      3.C
Ring(s) factor, modulo an ideal      368.F
Ring(s) form      284.D
Ring(s) generalized Boolean      42.C
Ring(s) Gorenstein      200.K
Ring(s) graded      369.B
Ring(s) ground (of a module)      277.D
Ring(s) ground (of an algebra)      29.A
Ring(s) group (of a compact group)      69.A
Ring(s) Hecke      32.D
Ring(s) Hensel      370.C
Ring(s) Henselian      370.C
Ring(s) hereditary      200.K
Ring(s) homogeneous      369.B
Ring(s) homogeneous coordinate      16.A
Ring(s) integrally closed      67.I
Ring(s) Krull      67.J
Ring(s) left Artinian      368.F
Ring(s) left hereditary      200.K
Ring(s) left Noetherian      368.F
Ring(s) left semihereditary      200.K
Ring(s) local      284.D
Ring(s) local (of a subvariety)      16.B
Ring(s) locally Macaulay      284.D
Ring(s) Macaulay      284.D
Ring(s) Macaulay local      284.D
Ring(s) Noetherian      284.A
Ring(s) Noetherian local      284.D
Ring(s) Noetherian semilocal      284.D
Ring(s) normal      67.I
Ring(s) normed      36.A
Ring(s) of a valuation      439.B
Ring(s) of convergent power series      370.B
Ring(s) of differential polynomials      113
Ring(s) of endomorphisms (of an Abelian variety)      3.C
Ring(s) of formal power series      370.A
Ring(s) of fractions      67.G
Ring(s) of operators      308.C
Ring(s) of p-adic integers      439.F
Ring(s) of polynomials      337.A 369
Ring(s) of power series      370
Ring(s) of quotients of a ring with respect to a prime ideal      67.G
Ring(s) of quotients of a ring with respect to a subset of the ring      67.G
Ring(s) of scalars (of a module)      277.D
Ring(s) of total quotients      67.G
Ring(s) of valuation vectors      6.C
Ring(s) polynomial      337.A 369.A
Ring(s) polynomial, in m variables      337.B
Ring(s) power series      370.A
Ring(s) primary      368.H
Ring(s) primitive      368.H
Ring(s) principal ideal      67.K
Ring(s) Pruefer      200.K
Ring(s) pseudogeometric      284.F
Ring(s) quasilocal      284.D
Ring(s) quasisemilocal      284.D
Ring(s) quasisimple      368.E
Ring(s) quotient      368.E
Ring(s) regular      85.B 284.D
Ring(s) regular local      284.D
Ring(s) representation      237.H
Ring(s) representative (of a compact Lie group)      249.U
Ring(s) residue class, modulo an ideal      368.F
Ring(s) right Artinian      368.F
Ring(s) right hereditary      200.K
Ring(s) right Noetherian      368.F
Ring(s) semihereditary      200.K
Ring(s) semilocal      284.D
Ring(s) semiprimary      368.H
Ring(s) semiprimitive      368.H
Ring(s) semisimple      368.G
Ring(s) simple      368.G
Ring(s) splitting      29.K
Ring(s) topological      423.P
Ring(s) unitary      368.A 409.C
Ring(s) universally Japanese      284.F
Ring(s) Zariski      284.C
Ring(s) zero      368.A
Ring(s), coherent sheaf of      16.E
Ringed space      383.H
Ringed space local      383.H
Ringel, Gerhard(1919 )      157.E 157.r 186.r
Ringrose, John Robert(1932-)      308.r
Rinnooy Kan, Alexander H.G.(1949-)      376.r
Rinow, Willi(1907-1979)      178.A
Riordan, John(1903-)      66.r 330.r
Ripple      205.F
Riquier, C.      428.B 428.r
Rishel, Raymond W.      405.r
Risk Bayes      398.B
Risk consumer’s      404.C
Risk function      398.A
Risk posterior      399.F
Risk premium      214.B
Risk producer’s      404.C
Risk theory      214.C
Risk theory classical      214.C
Risk theory collective      214.C
Risk theory individual      214.C
Rissanen, Jorma(1932-)      86.D
Ritt basis theorem (on differential polynomials)      113
Ritt, Joseph Fels(1893-1951)      113.* 113.r 428.r
Ritter, Klaus(1936-)      292.r
Ritz method      46.F 303.I 304.B
Ritz method Rayleigh —      46.F 271.G
Ritz, Walter(1878-1909)      46.F 303.I 304.B
Riviere, Nestor Marcelo(1940-1978)      224.E
Roache, Patrick John(1938-)      300.r
Robbin, Joel W.(1941-)      126.G 126.r 183
Robbins — Kiefer inequality, Chapman —      399.D
Robbins, Herbert(Ellis)(1915-)      250.r 399.D
Roberts, Joel L.(1940-)      16.I
Roberts, John Elias(1939-)      150.E
Roberts, John Henderson(1906-)      117.C
Roberts, Richard A.(1935-)      86.D
Robertson — Walker metrics      359.E
Robertson, Alex P.      424.r
Robertson, Howard Percy(1903-1961)      359.E
Robertson, Wendy J.      424.X 424.r
Robin constant      48.B
Robin problem      323.F
Robin, Gustave(1855-1897)      48.B 323.F
Robinson, Abraham(1918-1974)      118.D 276.D 276.E 276.r 293.A 293.D 293.r
Robinson, Derek William(1935-)      36.K 36.r 308.r 402.G 402.r
Robinson, G.      301.r
Robinson, Julia Bowman(1919-1985)      97.* 97.r
Robinson, R.Clark      77.F 126.H 126.J 126.L 126.r
Robinson, Raphael Mitchel(1911-)      356.B
Robust and nonparametric method      371
Robust estimation      371.A
Robust method      371.A
Roch, Gustave(1839-1866)      9.C 9.F 11.D 15.D 237.G 366.A—D
Roche — Schloemilch remainder      App. A Table
Roche, Edouard Albert(1820-1883)      App.A Table
Rockafellar, R.Tyrrell(1935-)      89.r 292.D
Rodin, Burton(1933-)      367.I 367.r
Rodoskii, Kirill Andreevich(1913-)      123.E
Rodrigues formula      393.B
Rodrigues, Olinde(1794-1851)      393.B
Roepstorff — Araki — Sewell inequality      402.G
Roepstorff — Fannes — Verbeure inequality      402.G
Roepstorff, Gert(1937-)      402.G
Rogers theorem, Dvoretzky —      443.D
Rogers, Claude Ambrose(1920-)      22.r 182.D 443.D
Rogers, Hartley, Jr.(1926-)      22.r 81.D 81.r 97.r 356.r
Rogers, William H.      371.r
Roggenkamp, Klaus W.(1940-)      362.r
Rogosinski, Werner Wolfgang(1894-1964)      159.H 159.r 242.A
Rohrl, Helmut(1927-)      196 253.D
Roitman, A.A.      16.R 16.r
Rokhlin theorem      114.K
Rokhlin, Vladimir Abramovich(1919-1984)      56.H 114.H 114.K 136.E 136.H 136.r 213.r
Rolfsen, Dale Preston Odin(1942-)      235.r
Rolle theorem      106.E
Rolle, Michel(1652-1719)      106.E
Rolling curve (of a roulette)      93.H
Roman and medieval mathematics      372
Romanov, Vladimir Gabrilovich      218.H
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте