|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
 |
Предметный указатель |
Riemann — Roch type, Hirzebruch theorem of 366.B
Riemann — Stieltjes integral 94.B 166.C
Riemann, G.F.B. 363
Riemann, G.F.B. P-function of 253.B
Riemann, Georg Friedrich Bernhard(1826-1866) 3.I 3.L 3.r 9.C 9.F 9.I 11.B—D 11.r 12.B 15.D 16.V 20 21.A 21.C 21.F 30.C 37.K 46.E 51.E 74.D 77.B 80.K 94.B 105.A 105.P 105.W 107.A 109 110.E 123.A 123.B 137 152.A 159.A 160.A 181 198.A 198.D 198.Q 199.A 216.A 217.J 237.G 253.B 253.D 267 274.G 275.A 285.A 286.L 323.E 325.D 334.C 344.A 363 364.A 364.B 364.D 365.A 366.A—D 367.A 367.B 367.E 379.C 379.S 412.A—D 412.J 413.* 416 426 447 450.A 450.B 450.I 450.Q App.A Tables 14.II 18.I
Riemannian connection 80.K 364.B
Riemannian connection, coefficients of 80.L
Riemannian curvature 364.D
Riemannian foliation 154.H
Riemannian geometry 137 App. Table
Riemannian homogeneous space 199.A
Riemannian homogeneous space symmetric 412.B
Riemannian manifold(s) 105.P 286.K 364
Riemannian manifold(s) flat 364.E
Riemannian manifold(s) irreducible 364.E
Riemannian manifold(s) isometric 364.A
Riemannian manifold(s) locally flat 364.E
Riemannian manifold(s) normal contact 110.E
Riemannian manifold(s) reducible 364.E
Riemannian metric 105.P
Riemannian metric pseudo- 105.P
Riemannian metric volume element associated with 105.W
Riemannian product (of Riemannian manifolds) 364.A
Riemannian space 364.A
Riemannian space irreducible symmetric App. A Table
Riemannian space locally symmetric App. A Table
Riemannian submanifold 365
Riemenschneider, Oswald W.(1941-) 232.r
Riesz (F. and M.) theorem 168.C
Riesz (F. and M.) theorem (on bounded holomorphic functions on a disk) 43.D
Riesz (F.) theorem (on functions) 317.B
Riesz convexity theorem 88.C
Riesz decomposition (in a Markov chain) 260.D
Riesz decomposition (representation) 197.F
Riesz decomposition of a superharmonic or subharmonic function 193.S
Riesz group 36.H
Riesz method of order k, summable by 379.R
Riesz method of summation of the kth order 379.R
Riesz potential 338.B
Riesz space 310.B
Riesz transform 251.O
Riesz — Fischer theorem 168.B 317.A
Riesz — Schauder theorem 68.E
Riesz — Thorin theorem 224.A
Riesz, Frigyes(Frederic)(1880-1956) 43.D 68.A 68.E 68.r 77.B 136.B 162 164.G 164.I 168.B 193.S 197.A 197.F 197.r 251.O 251.r 260.D 310.A 310.B 317.A 317.B 390.r 425.r
Riesz, Marcel(1886-1969) 43.D 88.C 121.r 125.A 164.G 164.I 224.A 338.B 379.R
Right ideal 27.A
Right A-module 277.D
Right adjoint functor 52.K
Right angle 151.D
Right annihilator (of a subset of an algebra) 29.H
Right Artinian ring 368.F
Right balanced (functor) 200.I
Right circular cone 350.B
Right conoid 111.I
Right continuous (function) 84.B
Right coset (of a subgroup of a group) 190.C
Right coset space (of a topological group) 423.E
Right decomposition, Peirce (in a unitary ring) 368.F
Right derivative 106.A
Right derived functor 200.I
Right differentiable 106.A
Right endpoint (of an interval) 355.C
Right equivalent 51.C
Right exact (functor) 200.I
Right G-set 362.B
Right global dimension (of a ring) 200.K
Right helicoid 111.I
Right ideal (of a ring) 368.F
Right ideal integral 27.A
Right injective resolution (of an A-module) 200.F
Right invariant Haar measure 225.C
Right invariant tensor field (on a Lie group) 249.A
Right inverse (of ) 286.G
Right inverse element (of an element of a ring) 368.B
Right linear space 256.A
Right majorizing function 316.E
Right Noetherian ring 368.F
Right operation (of a set to another set) 409.A
Right order (of a g-lattice) 27.A
Right parametrix 345.A
Right projective space 343.H
Right quotient space (of a topological group) 423.E
Right regular representation (of a group) 362.B
Right regular representation (of an algebra) 362.E
Right resolution (of an A-module) 200.F
Right satellite 200.I
Right semi-integral 68.N
Right semihereditary ring 200.K
Right shunt 115.B
Right singular point (of a diffusion process) 115.B
Right superior function 316.E
Right translation 249.A 362.B
Right uniformity (of a topological group) 423.G
Right, limit on the 87.F
Right-adjoint (linear mapping) 256.Q
Rigid (characteristic class of a foliation) 154.G
Rigid (isometric immersion) 365.E
Rigid body 271.E
Rigidity (of a sphere) 111.I
Rigidity theorem 178.C
Rigidity theorem strong 122.G
Rigidity, modulus of 271.G
Riickert, Walter 23.B
Riley, Robert Freed(1935-) 235.E
Rim, Dock S.(1928-) 200.M
Ring homomorphism 368.D
Ring isomorphism 368.D
Ring operations 368.A
Ring(s) 368
Ring(s) adele (of an algebraic number field) 6.C
Ring(s) affine 16.A
Ring(s) anchor 410.B
Ring(s) Artinian 284.A
Ring(s) associated graded 284.D
Ring(s) basic (of a module) 277.D
Ring(s) Boolean 42.C
Ring(s) Burnside 431.F
Ring(s) category of 52.B
Ring(s) category of commutative 52.B
Ring(s) Chow (of a projective variety) 16.R
Ring(s) cobordism 114.H
Ring(s) coefficient (of a semilocal ring) 284.D
Ring(s) coefficient (of an algebra) 29.A
Ring(s) cohomology 201.I
Ring(s) cohomology, of an Eilenberg — MacLane complex App. A Table
Ring(s) cohomology, of compact connected Lie groups App. A Table
Ring(s) commutative 67 368.A
Ring(s) complete local 284.D
Ring(s) complete Zariski 284.C
Ring(s) completely integrally closed 67.I
Ring(s) completely primary 368.H
Ring(s) completion, with respect to an ideal 16.X
Ring(s) complex cobordism 114.H
Ring(s) coordinate (of an affine variety) 16.A
Ring(s) correspondence (of a nonsingular curve) 9.H
Ring(s) de Rham cohomology (of a differentiable manifold) 105.R 201.I
Ring(s) differential 113
Ring(s) differential extension 113
Ring(s) discrete valuation 439.E
Ring(s) division 368.B
Ring(s) endomorphism (of a module) 277.B 368.C
Ring(s) endomorphism (of an Abelian variety) 3.C
Ring(s) factor, modulo an ideal 368.F
Ring(s) form 284.D
Ring(s) generalized Boolean 42.C
Ring(s) Gorenstein 200.K
Ring(s) graded 369.B
Ring(s) ground (of a module) 277.D
Ring(s) ground (of an algebra) 29.A
| Ring(s) group (of a compact group) 69.A
Ring(s) Hecke 32.D
Ring(s) Hensel 370.C
Ring(s) Henselian 370.C
Ring(s) hereditary 200.K
Ring(s) homogeneous 369.B
Ring(s) homogeneous coordinate 16.A
Ring(s) integrally closed 67.I
Ring(s) Krull 67.J
Ring(s) left Artinian 368.F
Ring(s) left hereditary 200.K
Ring(s) left Noetherian 368.F
Ring(s) left semihereditary 200.K
Ring(s) local 284.D
Ring(s) local (of a subvariety) 16.B
Ring(s) locally Macaulay 284.D
Ring(s) Macaulay 284.D
Ring(s) Macaulay local 284.D
Ring(s) Noetherian 284.A
Ring(s) Noetherian local 284.D
Ring(s) Noetherian semilocal 284.D
Ring(s) normal 67.I
Ring(s) normed 36.A
Ring(s) of a valuation 439.B
Ring(s) of convergent power series 370.B
Ring(s) of differential polynomials 113
Ring(s) of endomorphisms (of an Abelian variety) 3.C
Ring(s) of formal power series 370.A
Ring(s) of fractions 67.G
Ring(s) of operators 308.C
Ring(s) of p-adic integers 439.F
Ring(s) of polynomials 337.A 369
Ring(s) of power series 370
Ring(s) of quotients of a ring with respect to a prime ideal 67.G
Ring(s) of quotients of a ring with respect to a subset of the ring 67.G
Ring(s) of scalars (of a module) 277.D
Ring(s) of total quotients 67.G
Ring(s) of valuation vectors 6.C
Ring(s) polynomial 337.A 369.A
Ring(s) polynomial, in m variables 337.B
Ring(s) power series 370.A
Ring(s) primary 368.H
Ring(s) primitive 368.H
Ring(s) principal ideal 67.K
Ring(s) Pruefer 200.K
Ring(s) pseudogeometric 284.F
Ring(s) quasilocal 284.D
Ring(s) quasisemilocal 284.D
Ring(s) quasisimple 368.E
Ring(s) quotient 368.E
Ring(s) regular 85.B 284.D
Ring(s) regular local 284.D
Ring(s) representation 237.H
Ring(s) representative (of a compact Lie group) 249.U
Ring(s) residue class, modulo an ideal 368.F
Ring(s) right Artinian 368.F
Ring(s) right hereditary 200.K
Ring(s) right Noetherian 368.F
Ring(s) semihereditary 200.K
Ring(s) semilocal 284.D
Ring(s) semiprimary 368.H
Ring(s) semiprimitive 368.H
Ring(s) semisimple 368.G
Ring(s) simple 368.G
Ring(s) splitting 29.K
Ring(s) topological 423.P
Ring(s) unitary 368.A 409.C
Ring(s) universally Japanese 284.F
Ring(s) Zariski 284.C
Ring(s) zero 368.A
Ring(s), coherent sheaf of 16.E
Ringed space 383.H
Ringed space local 383.H
Ringel, Gerhard(1919 ) 157.E 157.r 186.r
Ringrose, John Robert(1932-) 308.r
Rinnooy Kan, Alexander H.G.(1949-) 376.r
Rinow, Willi(1907-1979) 178.A
Riordan, John(1903-) 66.r 330.r
Ripple 205.F
Riquier, C. 428.B 428.r
Rishel, Raymond W. 405.r
Risk Bayes 398.B
Risk consumer’s 404.C
Risk function 398.A
Risk posterior 399.F
Risk premium 214.B
Risk producer’s 404.C
Risk theory 214.C
Risk theory classical 214.C
Risk theory collective 214.C
Risk theory individual 214.C
Rissanen, Jorma(1932-) 86.D
Ritt basis theorem (on differential polynomials) 113
Ritt, Joseph Fels(1893-1951) 113.* 113.r 428.r
Ritter, Klaus(1936-) 292.r
Ritz method 46.F 303.I 304.B
Ritz method Rayleigh — 46.F 271.G
Ritz, Walter(1878-1909) 46.F 303.I 304.B
Riviere, Nestor Marcelo(1940-1978) 224.E
Roache, Patrick John(1938-) 300.r
Robbin, Joel W.(1941-) 126.G 126.r 183
Robbins — Kiefer inequality, Chapman — 399.D
Robbins, Herbert(Ellis)(1915-) 250.r 399.D
Roberts, Joel L.(1940-) 16.I
Roberts, John Elias(1939-) 150.E
Roberts, John Henderson(1906-) 117.C
Roberts, Richard A.(1935-) 86.D
Robertson — Walker metrics 359.E
Robertson, Alex P. 424.r
Robertson, Howard Percy(1903-1961) 359.E
Robertson, Wendy J. 424.X 424.r
Robin constant 48.B
Robin problem 323.F
Robin, Gustave(1855-1897) 48.B 323.F
Robinson, Abraham(1918-1974) 118.D 276.D 276.E 276.r 293.A 293.D 293.r
Robinson, Derek William(1935-) 36.K 36.r 308.r 402.G 402.r
Robinson, G. 301.r
Robinson, Julia Bowman(1919-1985) 97.* 97.r
Robinson, R.Clark 77.F 126.H 126.J 126.L 126.r
Robinson, Raphael Mitchel(1911-) 356.B
Robust and nonparametric method 371
Robust estimation 371.A
Robust method 371.A
Roch, Gustave(1839-1866) 9.C 9.F 11.D 15.D 237.G 366.A—D
Roche — Schloemilch remainder App. A Table
Roche, Edouard Albert(1820-1883) App.A Table
Rockafellar, R.Tyrrell(1935-) 89.r 292.D
Rodin, Burton(1933-) 367.I 367.r
Rodoskii, Kirill Andreevich(1913-) 123.E
Rodrigues formula 393.B
Rodrigues, Olinde(1794-1851) 393.B
Roepstorff — Araki — Sewell inequality 402.G
Roepstorff — Fannes — Verbeure inequality 402.G
Roepstorff, Gert(1937-) 402.G
Rogers theorem, Dvoretzky — 443.D
Rogers, Claude Ambrose(1920-) 22.r 182.D 443.D
Rogers, Hartley, Jr.(1926-) 22.r 81.D 81.r 97.r 356.r
Rogers, William H. 371.r
Roggenkamp, Klaus W.(1940-) 362.r
Rogosinski, Werner Wolfgang(1894-1964) 159.H 159.r 242.A
Rohrl, Helmut(1927-) 196 253.D
Roitman, A.A. 16.R 16.r
Rokhlin theorem 114.K
Rokhlin, Vladimir Abramovich(1919-1984) 56.H 114.H 114.K 136.E 136.H 136.r 213.r
Rolfsen, Dale Preston Odin(1942-) 235.r
Rolle theorem 106.E
Rolle, Michel(1652-1719) 106.E
Rolling curve (of a roulette) 93.H
Roman and medieval mathematics 372
Romanov, Vladimir Gabrilovich 218.H
|
|
 |
Реклама |
 |
|
|