Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Schwarzschild, Karl(1873-1916)      359.E
Schweber, Silvan Samuel(1928-)      150.r
Schweitzer, Paul Alexander(1937-)      126.N 154.D
Schwerdt, Hans      19.r
Schwinger equation, Lippmann —      375.C
Schwinger function      150.F
Schwinger points      150.F
Schwinger, Julian Seymour(1918-)      132.C 146.A 150.A 150.F 308.H 361.A 375.C
Scidmore, Allan K.(1927-)      96.r
Sciences, information      75.F
Scipione del Ferro(1465-1526)      360
Score test, Fisher — Yates — Terry normal      371.C
Scores canonical      397.M
Scores factor      280.G 346.F
Scoring method      397.M
Scott, Dana S.      33.E 33.r
Scott, William Raymond(1919 )      151.r
Screening, sampling inspection with      404.C
Searle, Shayle R.(1928-)      403.r
Seasonal adjustment      397.N
Sebastiao e Silva, Jose(1914-)      125.BB
Sec (secant)      131.E
Secant      432.A
Secant hyperbolic      131.F
Sech (hyperbolic secant)      131.F
Second (unit of an angle)      139.D
Second axiom, Tietze’s      425.Q
Second barycentric derived neighborhood      65.C
Second boundary value problem (for harmonic functions)      193.F
Second boundary value problem (of partial differential equations of elliptic type)      323.F
Second category, set of      425.N
Second classification theorem (in the theory of obstructions)      305.C
Second complementary law (of Legendre symbols)      297.I
Second countability axiom      425.P
Second Cousin problem      21.K
Second definition (of an algebraic K-group)      237.J
Second difference      104.A
Second extension theorem (in the theory of obstructions)      305.C
Second factor (of a class number)      14.L
Second fundamental form (of an immersion of a manifold)      111.G 365.C App. Table
Second fundamental quantities (of a surface)      111.H
Second fundamental tensor      417.F
Second fundamental theorem (in Morse theory)      279.D
Second homotopy theorem      305.C
Second incompleteness theorem      185.C
Second isomorphism theorem (on topological groups)      423.J
Second kind (Abelian differential of)      11.C
Second kind (Abelian integral of)      11.C
Second kind (Fuchsian group of)      122.C
Second kind (integral equations of Fredholm type of)      217.A
Second kind perfect number of      297.D
Second kind, Stirling number of      66.D
Second law of cosines      432.A App. Table
Second law of thermodynamics      419.A
Second mean value theorem (for the D-integral)      100.G
Second mean value theorem (for the Riemann integral)      216.B
Second mean value theorem (for the Stieltjes integral)      94.C
Second quantization      377
Second separation axiom      425.Q
Second variation formula      178.A
Second-order asymptotic efficiency      399.O
Second-order design      102.M
Second-order efficiency      399.O
Second-order predicate      411.K
Second-order predicate logic      411.K
Secondary cohomology operation, stable      64.C
Secondary components (of a homogeneous space)      110.A
Secondary composition      202.R
Secondary obstruction      305.D
Secondary parameters      110.A
Secrest, Don H.(1932-)      299.r
Section (of a finite group)      362.I
Section (of a sheaf space)      383.C
Section circular      350.F
Section conic      78
Section cross (of a fiber bundle)      147.L
Section cross (of a fiber space)      148.D
Section cross-      126.C 286.H
Section cross-, for a closed orbit      126.G
Section differential cross      375.A 386.B
Section graph      186.C
Section local      126.E
Section local cross (of a fiber bundle)      147.E
Section n- (in a cell complex)      70.D
Section normal (of a surface)      410.B
Section r- (of a Euclidean complex)      70.B
Section r- (of a simplicial complex)      70.C
Section scattering cross      375.A
Section total (elastic) cross      386.B
Section zero- (of a block bundle)      147.Q
Section, set of (of a sheaf)      383.C
Sectional curvature      364.D
Sectional curvature holomorphic      364.D
Sectors, superselection      150.E 351.K
Secular equation      55.B 269.F
Secular perturbation      55.B
Sedenion      29.D
Sedov, Leonid Ivanovich(1907-)      116.r
Seebach, L.      425.r
Seeley, Robert Thomas(1932-)      274.I 323.K
Seelig, Carl(1894-1962)      129.r
Segal, Graeme Bryce(1941-)      105.r 237.J 366.r
Segal, Irving Ezra(1918-)      308.D 351.K
Segal, Jack(1934-)      382.A 382.C
Segment      155.B 178.H
Segment (in affine geometry)      7.D
Segment (in an ordered set)      311.B
Segment oriented      442.A
Segre, Beniamino(1903-1977)      366.r
Segre, Corrado(1863-1924)      11.B
Seibert, Peter      126.D
Seidel method, Gauss —      302.C
Seidel, Philipp Ludwig von(1821-1896)      302.C
Seidel, Wladimir P.(1906-1981)      62.C 62.D
Seidenberg, Abraham(1916-)      9.r 343.r
Seifert conjecture      126.N 154.D
Seifert matrix      235.C
Seifert surface      235.A
Seifert, Herbert(1907-)      65.r 91.r 99.r 126.N 154.D 170.r 201.r 235.A 235.C 235.r 410.r
Seinfeld, John Hersh(1942-)      3O3.r
Seitz, Gary M.      151.J
Seki, Takakazu(Kowa)(c.1642(1639?)-1708)      230 332
Sekiguchi, Jiro(1951-)      437.CC
Selberg sieve      123.E
Selberg theorem, Evans —      48.E 338.H
Selberg zeta function      450.T
Selberg, Atle(1917-)      4.A 32.H 32.r 122.F 122.G 123.B 123.D 123.E 412.K 437.X 437.CC 437.DD 450.A 450.I 450.K 450.T 450.r
Selberg, Henrik Ludvig(1906-)      17.A 17.C 17.D 17.r 48.E 124.B 338.H
Selection function      354.E
Selection parameter      396.F
Selection rule      351.H
Selection statistic      396.F
Selection, measurable      443.I
Selection, model      401.D
Self-adjoint (linear homogeneous ordinary differential equation)      315.B
Self-adjoint differential equation      252.K
Self-adjoint differential operator, formally      112.I
Self-adjoint essentially      251.E 390.I
Self-adjoint operator      251.E 390.F
Self-adjoint system of differential equations      252.K
Self-commutator      251.K
Self-dual (linear space)      256.H
Self-dual (regular cone)      384.E
Self-dual, anti- (G-connection)      80.Q
Self-excited vibration      318.B
Self-information      213.B
Self-intersection number      15.C
Self-loop      186.B
Self-polar tetrahedron      350.C
Self-polar triangle      78.J
Self-reciprocal function      220.B
Selfridge, R.G.      NTR
Sell, George R.(1937-)      126.M
Selmer, Ernst Sejersted(1920-)      118.C
Selten, Reinhard      173.B
Semi-explicit      303.D
Semi-implicit      303.D
Semi-integral, left      68.N
Semi-integral, right      68.N
Semi-intuitionism      156.C
Semi-invariant      226.A
Semi-invariant G-      226.A
Semi-invariant of a probability distribution      341.C
Semicontinuity, lower (of length)      246.A
Semicontinuous      84.C
Semicontinuous (mapping in a topological linear space)      153.D
Semicontinuous function      84.C
Semicontinuous lower      84.C
Semicontinuous partition, upper      425.L
Semicontinuous upper      84.C
Semidefinite Hermitian form      348.F
Semidefinite kernel, positive      217.H
Semidefinite matrix, positive      269.I
Semidefinite operator, positive      251.E
Semidefinite quadratic form, positive or negative      348.C
Semidirect product (of two groups)      190.N
Semidiscrete approximation      304.B
Semiexact (differential on an open Riemann surface)      367.I
Semifinite (von Neumann algebra)      308.E
Semifinite (weight on a von Neumann algebra)      308.D
Semiflow      126.B
Semiflow continuous      126.B
Semiflow discrete      126.B
Semiflow discrete, of class $C^r$      126.B
Semiflow of class $C^r$      126.B
Semigroup      88.E 190.P 409.A
Semigroup (of a Markov process)      261.B
Semigroup algebra      29.C
Semigroup algebra large      29.C
Semigroup bialgebra      203.G
Semigroup differentiable      378.F
Semigroup distribution      378.F
Semigroup dual      378.F
Semigroup equicontinuous, of class $(C^0)$      378.B
Semigroup free      161. A
Semigroup holomorphic      378.D
Semigroup locally equicontinuous      378.F
Semigroup nonlinear      378.F
Semigroup nonlinear, of operators      286.X
Semigroup of class $(C^0)$      378.B
Semigroup of operators      378
Semigroup order-preserving      286.Y
Semigroup unitary      409.C
Semihereditary ring      200.K
Semihereditary ring left      200.K
Semihereditary ring right      200.K
Semilattice      243.A
Semilattice lower      243.A
Semilattice upper      243.A
Semilinear (partial differential equations of elliptic type)      323.D
Semilinear mapping      256.P 277.L
Semilinear transformation      256.P
Semilocal ring      284.D
Semilocal ring analytically unramified      284.D
Semilocal ring Noetherian      284.D
Semilocal ring quasi-      284.D
Semilogarithmic paper      19.F
Semimartingale      262.E 406.B
Semimartingale continuous      406.B
Semimartingale decomposition      406.B
Seminorm (on a topological linear space)      424.F
Semiorbit      126.D
Semiorbit negative      126.D
Semiorbit positive      126.D
Semiordered set      311.A
Semiordering      311.A
Semipolarset      261.D
Semiprimary ring      368.H
Semiprime differential ideal (of a differential ring)      113
Semiprime ideal (of a differential ring)      113
Semiprimitive ring      368.H
Semireductive (action defined by a rational representation)      226.B
Semireflexive (locally convex space)      424.O
Semiregular point (of a surface in $E^3$)      111.J
Semiregular transformation (of a sequence)      379.L
Semisimple (algebraic group)      13.I
Semisimple (Banach algebra)      36.D
Semisimple (Jordan algebra)      231.B
Semisimple (Lie algebra)      248.E
Semisimple (Lie group)      249.D
Semisimple (matrix)      269.G
Semisimple A-module      277.H
Semisimple algebra      29.A
Semisimple component (of a linear transformation)      269.L
Semisimple linear representation      362.C
Semisimple linear transformation      269.L
Semisimple part of a nonsingular matrix      13.E
Semisimple part of an algebraic group      13.E
Semisimple ring      368.G
Semisimplicial complex      70.E
Semisimplicity, Cartan’s criterion of      248.F
Semistable (coherent sheaf)      16.Y
Semistable distribution      341.G
Semistable reduction theorem      16.Z
Semistable vector bundle (algebraic)      16.Y
Semivariation      443.G
Semple, John Greenlees(1904-1986)      12.r
Sen, Pranab Kumar(1937-)      280.r 371.r
Senior, James Kuhn      151.r
Sensitive grammar, context-      31.D
Sensory test      346.B
Separable (function in nomograms)      19.D
Separable (polynomial)      337.G
Separable (rational mapping)      16.I
Separable (stochastic process)      407.A
Separable (topological space)      425.P
Separable algebra      29.F 29.K 200.L
Separable algebra central      29.K
Separable element (of a field)      149.H
Separable extension (of a field)      149.H 149.K
Separable extension maximal (of a field)      149.H
Separable metric space      273.E
Separable perfectly      425.P
Separably generated extension (of a field)      149.K
Separated (formal scheme)      16.X
Separated (morphism)      16.D
Separated convex sets, strongly      89.A
Separated kernel      217.F
Separated S-scheme      16.D
Separated scheme      16.D
Separated space      425.Q
Separated topological group      423.B
Separated type      App. A Table
Separated uniform space      436.C
Separated variable type      App. A Table
Separately continuous (bilinear mapping)      424.Q
Separating family      207.C
Separating transcendence basis (of a field extension)      149.K
Separation axioms      425.Q
Separation axioms of (in set theory)      33.B
Separation axioms the first      425.Q
Separation axioms the fourth      425.Q
Separation axioms the second      425.Q
Separation axioms the third      425.Q
Separation axioms Tikhonov      425.Q
Separation cochain      305.B
Separation cocycle      305.B
Separation of variables      322.C
Separation principle      405.C
Separation theorem (on convex sets)      89.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте