Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Solution singular (of a differential ideal)      428.E
Solution singular (of a general partial differential equation)      320.C
Solution singular (of an ordinary differential equation)      313.A App. Table
Solution singular (of partial differential equations)      320.C
Solution stable (of the Hill equation)      268.E
Solution straight line      420.B
Solution strong (of Navier — Stokes equation)      204.C
Solution strong (of stochastic differential equations)      406.D
Solution system of fundamental (of a system of linear homogeneous equations)      269.M
Solution to the martingale problem      115.C
Solution trivial (of a system of linear homogeneous equations)      269.M
Solution unique strong      406.D
Solution uniqueness theorem of (of systems of linear differential equations of the first order)      316.D 316.G
Solution unstable (of the Hill equation)      268.E
Solution von Neumann — Morgenstern      173.D
Solution weak      204.C 323.G 378.I
Solution, fundamental system of (of a homogeneous linear ordinary differential equation)      252.B
Solution, Hill’s method of      268.B
Solution, pathwise uniqueness of      406.D
Solvability, Cartan’s criterion of      248.F
Solvable (by a Turing machine)      71.B
Solvable (ideal of a Lie algebra)      248.C
Solvable (Lie algebra)      248.C
Solvable (Lie group)      249.D
Solvable algebra      231.A
Solvable algebraic group      13.F
Solvable algebraic group k-      13.F
Solvable by radicals      172.H
Solvable group      190.I
Solvable group $\pi$-      151.F
Solvable group finite      151.D
Solvable group generalized      190.K
Solve (a conditional inequality)      211.A
Solve (a partial differential equation)      320.A
Solve (a system of algebraic equations)      10.A
Solve (a triangle)      432.A
Solve (an ordinary differential equation)      313.A
Solve (by means of a Turing machine)      71.E
Sommer, Friedrich(1912-)      198.r 367.r
Sommerfeld formula      App. A Table
Sommerfeld formula, Kneser —      App. A Table
Sommerfeld radiation condition      188.D
Sommerfeld, Arnold Johannes Wilhelm(1868-1951)      130.r 188.D 271.r 274.r 402.H App.A Table
Sommerville, Duncan Mclaren Young(1879-1934)      285.r
Soms, A.      399.N
Sonine formula, Weber —      App. A Table
Sonine polynomials      317.D App. Table
Sonine — Schafheitlin formula      App. A Table
Sonine(Sonin), Nikolai Yakovlevich(1849-1915)      317.D App.A Tables 20.VI
Sono Masazo(1886-1969)      8 284.G
SOR (successive overrelaxation)      302.C
Soreau, R.(1865-?)      19.r
Sorting      96.C
Sotomayor, Jorge(1942-)      126.M
Soudure      80.N
Sound propagation, equation of      325.A
Source      126.G 281.C
Source (of a jet)      105.X
Source autoregressive Gaussian      213.E
Source branch      282.C
Source coding theorem      213.D
Source coding theorem noiseless      213.D
Source coding theorem with a fidelity criterion      213.E
Source coding theory      213.A
Source ergodic information      213.C
Source information      213.A
Source stationary      213.C
Source without (vector field)      442.D
South pole      74.D 140
Southern hemisphere      140
Sova, Miroslav      378.D
Sowey, E.R.      354.r
Sp(A) (Spur of a matrix A)      269.F
SP(n,K) (symplectic group)      60.L
Space complexity      71.A
Space form      285.E 412.H
Space form Euclidean      412.H
Space form hyperbolic      412.H
Space form spherical      412.H
Space geometry      181
Space group      92.A
Space group crystallographic      92.A
Space group equivalent      92.A
Space reflection      359.B
Space(s)      381.B
Space(s) $k'$-      425.CC
Space(s) $L*$-      87.K
Space(s) $\aleph_0$-      425.Y
Space(s) $\mathbf{T}_0$-      425.Q
Space(s) $\mathbf{T}_1$      425.Q
Space(s) $\mathbf{T}_1$-uniform      436.C
Space(s) $\mathbf{T}_2$-      425.Q
Space(s) $\mathbf{T}_3$-      425.Q
Space(s) $\mathbf{T}_4$-      425.Q
Space(s) $\mathbf{T}_5$-      425.Q
Space(s) $\mathbf{T}_6$-      425.Q
Space(s) $\mathscr{E}$-      193.N
Space(s) $\omega$-connected      79.C
Space(s) $\Sigma$-      425.Y
Space(s) $\sigma$-compact      425.V
Space(s) $\sigma$-finite measure      270.D
Space(s) (DF)-      424.P
Space(s) (F)-      424.I
Space(s) (LF)-      424.W
Space(s) (M)-      424.O
Space(s) (S)-      424.S
Space(s) absolutely closed      425.U
Space(s) abstract      381.B
Space(s) abstract $L_p$      310.G
Space(s) abstract L      310.G
Space(s) abstract M      310.G
Space(s) action      398.A
Space(s) adjoint (of a topological linear space)      424.D
Space(s) affine      7.A
Space(s) affine locally symmetric      80.J
Space(s) affine symmetric      80.J
Space(s) algebraic      16.W
Space(s) algebraic fiber      72.I
Space(s) analytic      23.C
Space(s) analytic covering      23.E
Space(s) analytic measurable      270.C
Space(s) analytic, in the sense of Behnke and Stein      23.E
Space(s) analytically uniform      125.S
Space(s) arcwise connected      79.B
Space(s) at infinity (in affine geometry)      7.B
Space(s) attaching      202.E
Space(s) Baire      425.N
Space(s) Baire zero-dimensional      273.B
Space(s) Banach      37.A 37.B
Space(s) Banach analytic      23.G
Space(s) base (of a fiber bundle)      147.B
Space(s) base (of a fiber space)      148.B
Space(s) base (of a Riemann surface)      367.A
Space(s) base for      425.F
Space(s) basic (of a probability space)      342.B
Space(s) Besov      168.B
Space(s) bicompact      408.S
Space(s) biprojective      343.H
Space(s) Boolean      42.D
Space(s) Borel      270.C
Space(s) boundary      112.E
Space(s) bundle (of a fiber bundle)      147.B
Space(s) C-analytic      23.E
Space(s) C-covering      23.E
Space(s) Cartan      152.C
Space(s) Cartesian      140
Space(s) Cech-complete      436.I
Space(s) classifying (of a topological group)      147.G 147.H
Space(s) closed half-      7.D
Space(s) co-echelon      168. B
Space(s) collectionwise Hausdorff      425.AA
Space(s) collectionwise normal      425.AA
Space(s) comb      79.A
Space(s) compact      425.S
Space(s) compact metric      273.F
Space(s) complete      436.G
Space(s) complete measure      270.D
Space(s) complete product measure      270.H
Space(s) complete uniform      436.G
Space(s) completely normal      425.Q
Space(s) completely regular      425.Q
Space(s) complex Hilbert      197.B
Space(s) complex interpolation      224.B
Space(s) complex projective      343.D
Space(s) complex, form      365.L
Space(s) complexity      71.A
Space(s) concircularly flat      App. A Table
Space(s) configuration      126.L 402.G
Space(s) conformal      76.A
Space(s) conformally flat      App. A Table
Space(s) conjugate (of a normed linear space)      37.D
Space(s) conjugate (of a topological linear space)      424.D
Space(s) connected      79.A
Space(s) contractible      79.C
Space(s) control (in catastrophe theory)      51.B
Space(s) countable paracompact      425.Y
Space(s) countably compact      425.S
Space(s) countably Hilbertian      424.W
Space(s) countably normed      424.W
Space(s) covering      91.A
Space(s) crystallographic, group      92.A
Space(s) de Sitter      359.D
Space(s) decision      398.A
Space(s) developable      425.AA
Space(s) Dieudonne complete topological      435.I
Space(s) Dirichlet      338.Q
Space(s) discrete metric      273.B
Space(s) discrete topological      425.C
Space(s) Douady      23.G
Space(s) dual (of a linear space)      256.G
Space(s) dual (of a locally compact group)      437.J
Space(s) dual (of a normed linear space)      37.D
Space(s) dual (of a projective space)      343.B
Space(s) dual (of a topological linear space)      424.D
Space(s) dual(of a $C*$-algebra)      36.G
Space(s) echelon      168.B
Space(s) eigen-      269.L 390.A
Space(s) Eilenberg — Maclane      70.F
Space(s) Einstein      364.D App. Table
Space(s) elliptic      285.C
Space(s) error      403.E
Space(s) estimation      403.E
Space(s) external (in static model in catastrophe theory)      51.B
Space(s) fiber      72.I 148.B
Space(s) finite type power series      168.B
Space(s) Finsler      152.A
Space(s) Fock (antisymmetric)      377.A
Space(s) Fock (symmetric)      377.A
Space(s) Frechet      37.O 424.I 425.CC
Space(s) Frechet L-      87.K
Space(s) Frechet — Uryson      425.CC
Space(s) Frechet, in the sense of Bourbaki      37.O 424.I
Space(s) fully normal      425.X
Space(s) function      168.A 435.D
Space(s) fundamental      125.S
Space(s) G-      178.H 431.A
Space(s) general analytic      23.G
Space(s) generalized topological      425.D
Space(s) generating (of a quadric hypersurface)      343.E
Space(s) globally symmetric Riemannian      412.A
Space(s) Green      193.N
Space(s) group      92.A
Space(s) H-      203.D
Space(s) H-closed      425.U
Space(s) Haar      142.B
Space(s) half- (of an affine space)      7.D
Space(s) Hardy      168.B
Space(s) Hausdorff      425.Q
Space(s) Hausdorff uniform      436.C
Space(s) hereditarily normal      425.Q
Space(s) Hermitian hyperbolic      412.G
Space(s) Hilbert      173.B 197.B
Space(s) Hilbert, adjoint      251.E
Space(s) Hilbert, exponential      377.D
Space(s) Hoelder      168.B
Space(s) holomorphically complete      23.F
Space(s) hyperbolic      285.C 412.H
Space(s) identification (by a partition)      425.L
Space(s) indiscrete pseudometric      273.B
Space(s) inductive limit      210.C
Space(s) infinite lens      91.C
Space(s) infinite type power series      168.B
Space(s) infinite-dimensional      117.B
Space(s) inner product      442.B
Space(s) internal (in static model in catastrophe theory)      51.B
Space(s) interpolation      224.A
Space(s) irreducible symmetric Hermitian      412.A
Space(s) isometric      273.B
Space(s) John — Nirenberg (=BMO)      168.B
Space(s) k-      425.CC
Space(s) K-complete analytic      23.F
Space(s) Kawaguchi      152.C
Space(s) Koethe      168.B
Space(s) Kolmogorov      425.Q
Space(s) Kuranishi      72.G
Space(s) Kuratowski      425.Q
Space(s) L-      87.K
Space(s) Lashnev      425.CC
Space(s) lattice ordered linear      310.B
Space(s) Lebesgue $(=L_p(\Omega))$      168.B
Space(s) Lebesgue measure, with ($\sigma$-) finite measure      136.A
Space(s) left coset (of a topological group)      423.E
Space(s) left projective      343.H
Space(s) left quotient (of a topological group)      423.E
Space(s) lens      91.C
Space(s) Lindeloef      425.S
Space(s) linear topological      424.A
Space(s) Lipschitz      168.B
Space(s) local moduli, of a compact complex manifold      72.G
Space(s) local ringed      383.H
Space(s) locally $\omega$-connected      79.C
Space(s) locally arcwise connected      79.B
Space(s) locally compact      425.V
Space(s) locally connected      79.A
Space(s) locally contractible      79.C 204.C
Space(s) locally convex Frechet      424.I
Space(s) locally Euclidean      425.V
Space(s) locally n-connected      79.C
Space(s) locally symmetric      364.D
Space(s) locally symmetric Riemannian      412.A
Space(s) locally totally bounded uniform      436.H
Space(s) locally trivial fiber      148.B
Space(s) Loeb      293.D
Space(s) loop      202.C
Space(s) Lorentz      168.B
Space(s) Luzin      22.I 422.CC
Space(s) M-      425.Y
Space(s) Mackey      424.N
Space(s) mapping      202.C 435.D
Space(s) maximal ideal (of a commutative Banach space)      36.E
Space(s) measurable      270.C
Space(s) measure      270.D
Space(s) metric vector      256.H
Space(s) metrizable topological      273.K
Space(s) metrizable uniform      436.F
Space(s) Minkowski      258.A
Space(s) moduli      16.W 72.G
Space(s) Moishezon      16.W
Space(s) momentum phase      126.L
Space(s) Montel      424.O
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте