Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Space(s) Moor      273.K 425.AA
Space(s) n-classifying (of a topological group)      147.G
Space(s) n-connected      79.C 202.L
Space(s) n-connective fiber      148.D
Space(s) n-dimensional      117.B
Space(s) n-simple      202.L
Space(s) non-Euclidean      285.A
Space(s) normal      425.Q
Space(s) normal analytic      23.D
Space(s) normed linear      37.B
Space(s) NP-      71.E
Space(s) nuclear      424.S
Space(s) null      251.D
Space(s) of absolute continuity      390.E
Space(s) of closed paths      202.C
Space(s) of constant curvature      364.D App. Table
Space(s) of continuous mapping      435.D
Space(s) of decision functions      398.A
Space(s) of elementary events      342.B
Space(s) of irrational numbers      22.A
Space(s) of line elements of higher order      152.C
Space(s) of singularity      390.E
Space(s) of type S      125.T
Space(s) orbit (of a G-space)      431.A
Space(s) ordered linear      310.B
Space(s) Orlicz      168.B
Space(s) P-      425.Y
Space(s) paracompact      425.S
Space(s) parameter (for a family of probability measures)      398.A
Space(s) parameter (of a family of compact complex manifolds)      72.G
Space(s) parameter (of a probability distribution)      396.B
Space(s) partition of a      425.L
Space(s) path      148.C
Space(s) path (of a Markov process)      261.B
Space(s) path-connected      79.B
Space(s) pathological      65.F
Space(s) Peirce      231.B
Space(s) perfectly normal      425.Q
Space(s) perfectly separable      425.P
Space(s) phase      126.B 163.C 402.C
Space(s) physical Hilbert      150.G
Space(s) pinching a set to a point      202.E
Space(s) polar      191.I
Space(s) Polish      22.I 273.J
Space(s) pre-Hilbert      197.B
Space(s) precompact metric      273.B
Space(s) precompact uniform      436.H
Space(s) principal (of a flag)      139.B
Space(s) principal half-      139.B
Space(s) probability      342.B
Space(s) product      425.K
Space(s) product measure      270.H
Space(s) product metric      273.B
Space(s) product topological      425.K
Space(s) product uniform      436.E
Space(s) projective limit      210.C
Space(s) projective, over $\Lambda$      147.E
Space(s) projectively flat      App. A Table
Space(s) pseudocompact      425.S
Space(s) pseudometric      273.B
Space(s) pseudometrizable uniform      436.F
Space(s) Q-      425.BB
Space(s) quasi-Banach      37.O
Space(s) quasicompact      408.S
Space(s) quasidual (of a locally compact group)      437.I
Space(s) quasinormed linear      37.O
Space(s) quaternion hyperbolic      412.G
Space(s) quotient      425.L
Space(s) quotient (by a discrete transformation group)      122.A
Space(s) quotient (by a transformation group)      122.A
Space(s) quotient (of a linear space with respect to an equivalence relation)      256.F
Space(s) quotient topological      425.L
Space(s) r-closed      425.U
Space(s) ramified covering      23.B
Space(s) real Hilbert      197.B
Space(s) real hyperbolic      412.G
Space(s) real interpolation      224.C
Space(s) real linear      256.A
Space(s) real projective      343.D
Space(s) real-compact      425.BB
Space(s) reduced product      202.Q
Space(s) reflexive Banach      37.G
Space(s) regular      425.Q
Space(s) regular Banach      37.G
Space(s) representation (for a Banach algebra)      36.D
Space(s) representation (of a representation of a Lie algebra)      248.B
Space(s) representation (of a representation of a Lie group)      249.O
Space(s) representation (of a unitary representation)      437.A
Space(s) Riemannian      364.A
Space(s) Riesz      310.B
Space(s) right coset (of a topological group)      423.E
Space(s) right projective      343.H
Space(s) right quotient (of a topological group)      423.E
Space(s) ringed      383.H
Space(s) sample      342.B 396.B 398.A
Space(s) scale of Banach      286.Z
Space(s) Schwartz      424.S
Space(s) separable      425.P
Space(s) separable metric      273.E
Space(s) separated      425.Q
Space(s) separated uniform      436.C
Space(s) sequential      425.CC
Space(s) sequentially compact      425.S
Space(s) sheaf      383.C
Space(s) shrinking, to a point      202.E
Space(s) Siegel upper half-, of degree n      32.F
Space(s) Siegel, of degree n      32.F
Space(s) simply connected      79.C 170
Space(s) smashing, to a point      202.E
Space(s) Sobolev      168.B
Space(s) Spanier cohomology theory, Alexander — Kolmogorov —      201.M
Space(s) spherical      285.D
Space(s) Spivak normal fiber      114.J
Space(s) standard Borel      270.C
Space(s) standard measurable      270.C
Space(s) standard vector (of an affine space)      7.A
Space(s) state (in static model in catastrophe theory)      51.B
Space(s) state (of a dynamical system)      126.B
Space(s) state (of a Markov process)      261.B
Space(s) state (of a stochastic proccess)      407.B
Space(s) Stein      23.F
Space(s) stratifiable      425.Y
Space(s) strongly paracompact      425.S
Space(s) structure (of a Banach algebra)      36.D
Space(s) subbase for      425.F
Space(s) Suslin      22.I 425.CC
Space(s) symmetric Hermitian      412.E
Space(s) symmetric homogeneous      412.B
Space(s) symmetric Riemannian      412
Space(s) symmetric Riemannian homogeneous      412.B
Space(s) tangent      105.H
Space(s) tangent vector      105.H
Space(s) Teichmueller      416
Space(s) tensor, of degree k      256.J
Space(s) tensor, of type (p,q)      256.J
Space(s) test function      125.S
Space(s) Thom      114.G
Space(s) Tikhonov      425.Q
Space(s) time parameter      260.A
Space(s) topological complete      436.I
Space(s) topological linear      424.A
Space(s) topological vector      424.A
Space(s) total (of a fiber bundle)      147.B
Space(s) total (of a fiber space)      148.B
Space(s) totally bounded metric      273.B
Space(s) totally bounded uniform      436.H
Space(s) totally disconnected      79.D
Space(s) transformation (of an algebraic group)      13.G
Space(s) underlying topological (of a complex manifold)      72.A
Space(s) underlying topological (of a topological group)      423.A
Space(s) uniform topological      436.C
Space(s) uniformizable topological      436.H
Space(s) uniformly locally compact      425.V
Space(s) unisolvent      142.B
Space(s) universal covering      91.B
Space(s) universal Teichmueller      416
Space(s) vector, over K      256.A
Space(s) velocity phase      126.L
Space(s) weakly symmetric Riemannian      412.J
Space(s) well-chained metric      79.D
Space(s) wild      65.F
Space-time Brownian motion      45.F
Space-time inversion      258.A
Space-time manifold      359.D
Space-time, Minkowski      359.B
Spacelike      258.A 359.B
Spaeth type division theorem (for microdifferential operators)      274.F
Spaeth, R.A.      274.F 314.A
Span (a linear subspace by a set)      256.F
Span (of a domain)      77.E
Span (of a Riemann surface)      367.G
Spanier, Edwin Henry(1921-)      64.r 70.r 148.r 170.r 201.M 201.r 202.I 202.r 305.r
Spanning tree      186.G
sparse      302.C
Spatial (*-isomorphism on von Neumann algebras)      308.C
Spatial tensor product      36.H
Spatially homogeneous (process)      261.A
Spatially isomorphic (automorphisms on a measure space)      136.E
Spearman rank correlation      371.K
Spearman, Charles(1863-1945)      346.F 346.r 371.K
Spec (spectrum)      16.D
Specht, Wilhelm(1907-1985)      10.r 151.r 190.r
Special Clifford group      61.D
Special divisor      9.C
Special flow      136.D
Special function(s)      389 App. Table
Special function(s) of confluent type      389.A
Special function(s) of ellipsoidal type      389.A
Special function(s) of hypergeometric type      389.A
Special functional equations      388
Special isoperimetric problem      228.A
Special Jordan algebra      231.A
Special linear group      60.B
Special linear group of degree n over K      60.B
Special linear group projective      60.B
Special linear group projective (over a noncommutative field)      60.O
Special linear group(over a noncommutative field)      60.O
Special orthogonal group      60.I
Special orthogonal group complex      60.I
Special orthogonal group over K with respect to Q      60.K
Special principle of relativity      359.B
Special relativity      359.B
Special representation (of a Jordan algebra)      231.C
Special surface      110.A
Special theory of perturbations      420.E
Special theory of relativity      359.A
Special unitary group      60.F
Special unitary group (relative to an $\varepsilon$-Hermitian form)      60.O
Special unitary group over K      60.H
Special unitary group projective, over K      60.H
Special universal enveloping algebra (of a Jordan algebra)      231.C
Special valuation      439.B
Speciality index $\mathfrak{o}$- (of a divisor of an algebraic curve)      9.F
Speciality index (of a divisor of an algebraic curve)      9.C
Speciality index (of a divisor on an algebraic surface)      15.D
Specialization      16.A
Specialization (in etale topology)      16.AA
Species ellipsoidal harmonics of the first, second, third or fourth      133.C
Species Lame functions of the first, second, third or fourth      133.C
Species singular projective transformation of the hth      343.D
Species singular quadric hypersurface of the hth (in a projective space)      343.E
Specific heat at constant pressure      419.B
Specific heat at constant volume      419.B
Specific resistance      130.B
Specification      401.A
Specification, problem of      397.P
Specificity      346.F
Specker, W.H.      142.C
Spector, Clifford(1930-)      81.r 156.E 156.r 356.H 356.r
Spectral analysis      390.A
Spectral concentration      331.F
Spectral decomposition      126.J 395.B
Spectral density, quadrature      397.N
Spectral functor      200.J
Spectral geometry      391.A
Spectral integral      390.D
Spectral invariant      136.E
Spectral mapping theorem      251.G
Spectral measure      390.B 390.K 395.B 395.C
Spectral measure complex      390.D
Spectral measure maximum      390.G
Spectral measure real      390.D
Spectral method      304.B
Spectral operator      390.K
Spectral property      136.E
Spectral radius      126.K 251.F 390.A
Spectral representation      390.E
Spectral representation complex      390.E
Spectral resolution      390.E
Spectral resolution complex      390.E
Spectral sequence      200.J
Spectral sequence (of a fiber space)      148.E
Spectral sequence cohomology      200.J
Spectral sequence Hodge      16.U
Spectral synthesis      36.L
Spectral theorem      390.E
Spectrally isomorphic (automorphisms on a measure space)      136.E
Spectrum      390.A
Spectrum (in homotopy theory)      202.T
Spectrum (of a commutative ring)      16.D
Spectrum (of a domain in a Riemannian manifold)      391.A
Spectrum (of a hyperfunction)      274.E
Spectrum (of a linear operator)      251.F 390.A
Spectrum (of a spectral measure)      390.C
Spectrum (of an element of a Banach algebra)      36.C
Spectrum (of an integral equation)      217.J
Spectrum absolutely continuous      390.E
Spectrum condition      150.D
Spectrum continuous (of a linear operator)      390.A
Spectrum continuous (of an integral equation)      217.J
Spectrum countable Lebesgue      136.E
Spectrum discrete      136.E 390.E
Spectrum Eilenberg — MacLane      202.T
Spectrum essential      390.E 390.I
Spectrum for p-forms      391.B
Spectrum formal (of a Noetherian ring)      16.X
Spectrum intermittent      433.C
Spectrum joint      36.M
Spectrum Kolmogorov      433.C
Spectrum point      390.A
Spectrum pure point      136.E
Spectrum quasidiscrete      136.E
Spectrum residual      390.A
Spectrum simple      390.G
Spectrum singular      125.CC 345.A 390.A
Spectrum singular (of a hyperfunction)      274.E
Spectrum singularity (of a hyperfunction)      125.CC 274.E
Spectrum sphere      202.T
Spectrum stable homotopy group of the Thom      114.G
Spectrum Thom      114.G 202.T
Speed measure      115.B
Speer, Eugene Richard(1943-)      146.A
Speiser theorem, Hilbert —      172.J
Speiser, Andreas(1885-1970)      151.r 172.J 190.r
Spencer mapping (map), Kodaira —      72.G
Spencer, Domina Eberle(1920-)      130.r
Spencer, Donald Clayton(1912-)      12.B 15.F 72.G 72.r 232.r 367.r 428.E 428.r 438.B 438.C 442.r
Spencer, Thomas      402.G
Sperner, Emanuel(1905-1980)      7.r 256.r 343.r 350.r
Sphere bundle n-      147.K
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте