Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sphere bundle n-cotangential      274.E
Sphere bundle n-normal      274.E
Sphere bundle n-tangential      274.E
Sphere bundle n-unit tangent      126.L
Sphere geometry      76.C
Sphere pair      235.G 65.D
Sphere spectrum      202.T
Sphere theorem (characterization of a sphere)      178.C
Sphere theorem (embedding in a 3-manifold)      65.E
Sphere(s)      139.I 150
Sphere(s) $\varepsilon$- (of a point)      273.C
Sphere(s) circumscribing (of a simplex)      139.I
Sphere(s) combinatorial, group of oriented differentiable structures on the      114.I
Sphere(s) complex      74.D
Sphere(s) exotic      114.B
Sphere(s) homotopy n-      65.C
Sphere(s) homotopy n-, h-cobordism group of      114.I
Sphere(s) horned, Alexander’s      65.G
Sphere(s) open      140
Sphere(s) open n-      140
Sphere(s) PL(k-l)-      65.C
Sphere(s) pseudo-      111.I
Sphere(s) Riemann      74.D
Sphere(s) solid      140
Sphere(s) solid n-      140
Sphere(s) topological      140
Sphere(s) topological solid      140
Sphere(s) unit      140
Sphere(s) w-      74.D
Sphere(s) z-      74.D
Spherical (real hypersurface)      344.C
Spherical (space form)      412.H
Spherical astronomy      392
Spherical Bessel function      39.B
Spherical coordinates      90.C App. Table
Spherical derivative (for an analytic or meromorphic function)      435.E
Spherical excess      432.B
Spherical Fourier transform      437.Z
Spherical function(s)      393
Spherical function(s) (on a homogeneous space)      437.X
Spherical function(s) Laplace      393.A
Spherical function(s)zonal (on a homogeneous space)      437.Y
Spherical G-fiber homotopy type      431.F
Spherical geometry      285.D
Spherical harmonic function      193.C
Spherical harmonics, biaxial      393.D
Spherical indicatrix (of a space curve)      111.F
Spherical modification      114.F
Spherical representation of a differentiable manifold      111.G
Spherical representation of a space curve      111.F
Spherical representation of a unimodular locally compact group      437.Z
Spherical space      285.D
Spherical triangle      432.B App. Table
Spherical trigonometry      432.B
Spherical type      13.R
Spherical wave      446
Spheroidal coordinates      133.D App. Table
Spheroidal wave function      133.E
Spin      132.A 258.A 415.G
Spin and statistics, connection of      132.A 150.D
Spin ball      351.L
Spin bundle      237.F
Spin continuous      258.A
Spin mapping (map)      237.G
Spin matrix, Pauli      258.A 415.G
Spin representation (of SO(n))      60.J
Spin representation (of Spin(n,C)      61.E
Spin representation even half-      61.E
Spin representation half-      61.E
Spin representation odd half-      61.E
Spin systems, lattice      402.G
Spin-flip model      340.C
Spin-structure      237.F 431.D
Spindler, Heinz      16.r
Spinor group      60.I 61.D
Spinor group complex      61.E
Spinor representation (of rank k)      258.A
Spinor(s)      61.E
Spinor(s) contravariant      258.A
Spinor(s) covariant      258.A
Spinor(s) dotted      258.B
Spinor(s) even half-      61.E
Spinor(s) mixed, of rank (k,n)      258.A
Spinor(s) odd half-      61.E
Spinor(s) undotted      258.B
Spinorial norm      61.D
Spiral      93.H
Spiral Archimedes      93.H
Spiral Bernoulli      93.H
Spiral Cornu      93.H
Spiral equiangular      93.H
Spiral hyperbolic      93.H
Spiral logarithmic      93.H
Spiral reciprocal      93.H
Spitzer, Frank Ludwig(1926-)      44.C 250.r 260.E 260.J 340.r
Spivak normal fiber space      114.J
Spivak, Michael D.(1940-)      114.J 191.r 365.r
SPLINE      223.F
Spline interpolation      223.F
Spline natural      223.F
Split ((B,N)-pair)      151.J
Split (cocycle in an extension)      257.E
Split (exact sequence)      277.K
Split extension (of a group)      190.N
Split k- (algebraic group)      13.N
Split K- (algebraic torus)      13.D
Split k-quasi-(algebraic group)      13.O
Split maximal k-, torus      13.Q
Split torus, maximal k-      13.Q
Splitting field for an algebra      362.F
Splitting field for an algebraic torus      13.D
Splitting field minimal (of a polynomial)      149.G
Splitting field of a polynomial      149.G
Splitting ring      29.K
Splitting, Heegaard      65.C
Spot prime      439.H
Sprindzhuk, Vladimir Gennadievich(1936-)      118.D 430.C
Springer, George(1924-)      367.r
Springer, Tonny Albert(1926-)      13.A 13.I 13.O 13.P 13.r
Spur      269.F
Square integrable      168.B
Square integrable unitary representation      437.M
Square matrix      269.A
Square net      304.E
Square numbers      4.D
Square(s) Euler      241.B
Square(s) latin      241
Square(s) least, approximation      336.D
Square(s) matrix of the sum of, between classes      280.B
Square(s) matrix of the sum of, within classes      280.B
Square(s) method of least      303.I
Square(s) middle-, method      354.B
Square(s) Room      241.D
Square(s) Shrikhande      102.K
Square(s) Youden      102.K
Square(s) Youden, design      102.K
Square-free integer      347.H
Srinivasan, B.      App.B Table
Srinivasan, T.P.      164.G
Srivastava, Muni Shanker(1936-)      280.r
Stability      286.S 303.E 394
Stability $A(\alpha)$-      303.G
Stability $A_0$-      303.G
Stability A-      303.G
Stability absolute      303.G
Stability conjecture      126.J
Stability group      362.B
Stability interval of absolute      303.G
Stability interval of relative      303.G
Stability orbital (of a solution of a differential equation)      394.D
Stability principle of linearized      286.S
Stability region of absolute (of the Runge — Kutta (P,p) method)      303.G
Stability region of relative      303.G
Stability relative      303.G
Stability stiff-      303.G
Stability structural      126.J 290.A
Stability structural, theorem      126.J
Stability subgroup (of a topological group)      431.A
Stability theorem $\Omega$-      126.J
Stability, exchange of      286.T
Stabilizer (in a permutation group)      151.H
Stabilizer (in a topological transformation group)      431.A
Stabilizer (in an operation of a group)      362.B
Stabilizer reductive      199.A
Stable      394.A
Stable $C^r$-structurally      126.H
Stable $C^r-\Omega$-      126.H
Stable (coherent sheaf on a projective variety)      241.Y
Stable (compact leaf)      154.D
Stable (discretization, initial value problems)      304.D
Stable (equilibrium solution)      286.S
Stable (initial value problem)      304.F
Stable (invariant set)      126.F
Stable (linear function)      163.H
Stable (manifold)      126.G
Stable (minimal submanifold)      275.B
Stable (static model in catastrophe theory)      51.E
Stable absolutely      303.G
Stable asymptotically      126.F 286.S 394.B
Stable cohomology operation      64.B
Stable conditionally      394.D
Stable curve      9.K
Stable distribution      341.G
Stable distribution quasi-      341.G
Stable distribution semi-      341.G
Stable exponentially      163.G 394.B
Stable externally, set      186.I
Stable globally asymptotically      126.F
Stable homotopy group      202.T App. Table
Stable homotopy group (of Thorn spectrum)      114.G
Stable homotopy group of classical groups      202.V
Stable homotopy group of k-stem      202.U
Stable in both directions (Lyapunov stable)      394.A
Stable internally, set      186.I
Stable Lagrange      126.E
Stable Lyapunov      126.F
Stable Lyapunov, in the positive or negative direction      394.A
Stable manifold      126.G 126.J
Stable negatively Lagrange      126.E
Stable negatively Poisson      126.E
Stable one-side, for exponent $\frac{1}{2}$      App. A Table
Stable orbitally      126.F
Stable point      16.W
Stable Poisson      126.E
Stable positively Lagrange      126.E
Stable positively Poisson      126.E
Stable primary cohomology operation      64.C
Stable process      5.F
Stable process one-sided, of the exponent $\alpha$      5.F
Stable process strictly      5.F
Stable process symmetric      5.F
Stable process, exponent of      5.F
Stable range (of embeddings)      114.D
Stable reduction (of a curve)      9.K
Stable reduction (of an Abelian variety)      3.N
Stable reduction potential (of an Abelian variety)      3.N
Stable reduction theorem      3.N 9.K
Stable relatively      303.G
Stable secondary cohomology operation      64.C
Stable set      173.D
Stable set externally      186.I
Stable set internally      186.I
Stable solution (of the Hill equation)      268.E
Stable state      260.F 394.A 404.A
Stable uniformly      394.B
Stable uniformly asymptotically      163.G 394.B
Stable uniformly Lyapunov      126.F
Stable vector bundle (algebraic)      16.Y
Stable vector bundle (topological)      237.B
Stably almost complex manifold      114.H
Stably equivalent (vector bundles)      237.B
Stably fiber homotopy equivalent      237.I
Stably parallelizable (manifold)      114.I
STACK      96.E
Stage method, (P+1)-      303.D
Stalk (of a sheaf over a point)      16.AA 383.B
Stallings, John Robert, Jr.(1935-)      65.A 65.C 65.E 65.F 235.G 426
Stampacchia, Guido(1922-1978)      440.r
Stanasila(Stanasila), Octavian(1939-)      23.r
Stancu-Minasian, I.M.      408.r
Standard (in nonstandard analysis)      293.B
Standard (transition probability)      260.F
Standard Borel space      270.C
Standard complex (of a Lie algebra)      200.O
Standard defining function      125.Z
Standard deviation (characteristics of the distribution)      397.C
Standard deviation (of a probability distribution)      341.B
Standard deviation (of a random variable)      342.C
Standard deviation population      396.C
Standard deviation sample      396.C
Standard form      241.A
Standard form (of a difference equation)      104.C
Standard form Legendre — Jacobi (of an elliptic integral)      134.A App. Table
Standard form of the equation (of a conic section)      78.C
Standard Gaussian distribution      176.A
Standard Kaehler metric (of a complex projective space)      232.D
Standard measurable space      270.D
Standard normal distribution      341.D
Standard parabolic/c-subgroup      13.Q
Standard part (in nonstandard analysis)      293.D
Standard q-simplex      201.E
Standard random walk      260.A
Standard resolution (of Z)      200.M
Standard sequence      400.K
Standard set      22.I
Standard vector space (of an affine space)      7.A
Stanley, Harry Eugene(1941-)      402.r
Stanley, Richard Peter(1944-)      16.Z
Stapp, Henry Pierce(1928-)      146.C 274.D 274.I 386.C
Star (in a complex)      13.R
Star (in a Euclidean complex)      70.B
Star (in a projective space)      343.B
Star (in a simplicial complex)      70.C
Star (of a subset defined by a covering)      425.R
Star body, bounded      182.C
Star convergence      87.K
Star convergence (o)-      87.L
Star convergence relative uniform      310.F
Star open      70.B 70.C
Star refinement (of a covering)      425.R
Star region      339.D
Star topology, weak (of a normed linear space)      37.E 424.H
Star-finite (covering of a set)      425.R
Star-finite property      425.S
Stark, Harold Mead(1939-)      83.r 118.D 182.G 347.E 450.E
Start node      281.D
Starting values (in a multistep method)      303.E
Stasheff, James Dillon(1936-)      56.r 201.r
State estimator      86.E
State space      126.B
State space (in catastrophe theory)      51.B
State space (of a dynamical system)      126.B
State space (of a Markov process)      261.B
State space (of a stochastic process)      407.B
State variable      127.A
State(s) (in Ising model)      340.B
State(s) (in quantum mechanics)      351.B
State(s) (of a $C*$-algebra)      308.D
State(s) bound      351.D
State(s) ceiling      402.G
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте