Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Valuation(s) discrete      439.E
Valuation(s) equivalent      439.B
Valuation(s) exponential      439.B
Valuation(s) generalized      439.B
Valuation(s) multiplicative      439.C
Valuation(s) non-Archimedean      14.F 439.C
Valuation(s) normal      439.E 439.H
Valuation(s) normalized      439.E
Valuation(s) over a subfield      439.B 439.C
Valuation(s) pseudo-      439.K
Valuation(s) special      439.B
Valuation(s) trivial      439.C.F
Valuation(s), completion of      439.D
Valuation(s), prolongation of      439.B
Value distribution      124.A
Value function      108.B 405.A
Value group (of a multiplicative valuation)      439.C
Value group (of an additive valuation)      439.B
Value(s) (of a variable)      165.C
Value(s) (of an infinite continued fraction)      83.A
Value(s) (of an infinite product)      379.G
Value(s) absolute (of a complex number)      74.B
Value(s) absolute (of a real number)      355.A
Value(s) absolute (of a vector)      442.B
Value(s) absolute (of an element of a vector lattice)      310.B
Value(s) absolute (of an element of an ordered field)      149.N
Value(s) asymptotic (of a meromorphic function)      62.A 272.H
Value(s) boundary (hyperfunction)      125.V
Value(s) boundary (of a conformal mapping)      77.B
Value(s) boundary (relative to a differential operator)      112.E
Value(s) characteristic (of a linear operator)      390.A
Value(s) cluster      62.A
Value(s) cluster, theorem      43.G
Value(s) critical (in bifurcation theory)      286.R
Value(s) critical (of a $C^\infty$-function on a manifold)      279.B
Value(s) critical (of a $C^\infty$-mapping $\varphi:M \rightarrow M'$)      105.J
Value(s) critical (of a contact process)      340.C
Value(s) critical (of a mapping u: $\mathbf{R}^n \rightarrow \mathbf{R}^m$)      208.B
Value(s) critical (of an external magnetic field)      340.B
Value(s) exceptional (of a transcendental entire function)      429.B
Value(s) exceptional, Borel      272.E
Value(s) exceptional, Nevanlinna      272.E
Value(s) exceptional, Picard      272.E
Value(s) expectation (of an observable)      351.B
Value(s) expected (of a random variable)      342.C
Value(s) gap (of a point on a Riemann surface)      11.D
Value(s) initial (for ordinary differential equations)      316.A
Value(s) initial (for partial differential equatons)      321.A
Value(s) initial (for stochastic differential equations)      406.D
Value(s) limit (of a mapping)      87.F
Value(s) mean (of a function on a compact group)      69.A
Value(s) mean (of a weakly stationary process)      395.C
Value(s) most probable      401.E
Value(s) principal (of inverse trigonometric functions)      131.E
Value(s) principal (of log z)      131.G
Value(s) principal, Cauchy (of an improper integral)      216.D
Value(s) principal, Cauchy (of the integral of a function in $(—\infty,\infty))$      216.E
Value(s) proper (of a boundary value problem)      315.B
Value(s) proper (of a linear mapping)      269.L
Value(s) proper (of a linear operator)      390.A
Value(s) proper (of a matrix)      269.F
Value(s) range of (of a meromorphic function)      62.A
Value(s) regular      105.J
Value(s) sample      396.B
Value(s) sample characteristic      396.C
Value(s) Shapley      173.D
Value(s) singular      302.A
Value(s) singular, decomposition (SVD)      302.E
Value(s) starting      303.E
Value(s) stationary (of a function)      106.L
Value(s) true, of parameter      398.A
Value(s) truth (of a formula)      411.E
van Beijeren, Henk      402.G
van Ceulen, Ludolf(1540-1610)      332
Van Daele, Alfons      308.H
van Dantzig, D.      109 434.C
van den Berg, Franciscus Johannes(1833-1892)      19.B
van der Corput, Johannes Gualtherus(1890-1975)      4.C 182.H 242.A
van der Pol differential equation      290.C
van der Pol, Balthasar(1889-1959)      240.r 290.C
van der Waerden test      371.C
van der Waerden — Bortolotti covariant derivative      417.E
van der Waerden, Bartel Leendert(1903-)      8.* 8.r 12.B 24.r 29.r 60.r 66.r 67.r 90.r 92.F 92.r 122.r 149.r 172.r 187.r 190.r 196 284.r 337.r 351.r 362.r 368.r 369.E 371.C 417.E
van Hove sense, limit in      402.G
van Hove, Leon Charles Prudent(1924-)      351.K 402.G
van Kampen theorem (on fundamental groups)      170
van Kampen, Egbertos R.(1908-1942)      170
Van Moerbeke, Pierre(1944-)      287.C
van Roomen, Adriaan(1561-1615)      444
van Schooten, Frans(1615-1660)      444.r
Vandermonde determinant      103.G
Vandermonde, Alexandre Theophile(1735-1796)      103.G 190.Q
Vandiver conjecture      14.L
Vandiver, Harry Shultz(1882-1973)      14.L 145.* 145.r
Vanishing cocycle      16.U
Vanishing cycle      418.F
Vanishing theorem (on compact complex manifolds)      194.G
Vanishing theorem, Kodaira      232.D
Varadarajan, Veeravalli Seshadri(1937-)      249.r
Varadhan, Sathamangalam Ranga Ayyangar Srinivasa(1940-)      115.C 115.D 115.r 136.r 250.r 261.C 262.E 340.r 406.A 406.D 406.r
Varadier, M.      443.A
Varaiya, Pravin P.      86.D 108.B 292.F
Varchenko, A.N.      418.r
Varga, Otto(1909-1969)      152.C
Varga, Richard Steven(1928-)      302.r
Variability, measure of      397.C
Variable component (of a linear system)      15.C 16.N
Variable method, discrete      303.A
Variable(s)      165.C
Variable(s) (of a polynomial)      369.A
Variable(s) artificial      255.C
Variable(s) auxiliary      373.C
Variable(s) basic      255.A
Variable(s) bound      411.C
Variable(s) canonical (in analytical dynamics)      271.F
Variable(s) change of (in integral calculus)      216.C
Variable(s) complex      165.C
Variable(s) complex, theory of functions of      198.Q
Variable(s) dependent      165.C
Variable(s) differential (of a differential polynomial)      113
Variable(s) endogenous      128.C
Variable(s) exogenous      128.C
Variable(s) explanatory      403.D
Variable(s) hidden, theories      351.L
Variable(s) independent      165.C
Variable(s) individual      411.H
Variable(s) inner      25.B
Variable(s) lagged      128.C
Variable(s) object      411.G
Variable(s) outer      25.B
Variable(s) predetermined      128.C
Variable(s) predicate      411.G 411.H
Variable(s) proposition      411.E
Variable(s) random      342.C
Variable(s) random, $(S,\mathfrak{E})$-valued      342.C
Variable(s) random, $\mathbf{R}^n$-valued      342.C
Variable(s) random, independent      342.C
Variable(s) random, joint      342.C
Variable(s) random, n-dimensional      342.C
Variable(s) real      165.C
Variable(s) slack      255.A
Variable(s) state      127. A
Variable(s), sampling inspection by      404.C
Variable(s), separation of      322.C
Variable-step variable-order (VSVO) algorithms      303.E
Variance (of a probability distribution)      341.B
Variance (of a random variable)      342.C
Variance (of univariate quantitative data)      397.C
Variance analysis of      400.H 403.D
Variance between-group      397.L
Variance generalized      280.E 397.J
Variance matrix      341.B
Variance population      396.C
Variance sample      396.C
Variance sample generalized      280.E
Variance uniformly minimum unbiased estimator      399.C
Variance within-group      397.L
Variance, multivariate analysis of      280.B
Variance-covariance matrix      341.B 397.J
Variate canonical      280.E
Variate fixed      403.D
Variation curve      178.A
Variation vector field      178.A
Variation(s) (of an integral)      100.E
Variation(s) first      46.B
Variation(s) first, formula      178.A
Variation(s) geodesic      178.A
Variation(s) lower (of a set function)      380.B
Variation(s) negative (of a mapping)      246.H
Variation(s) negative (of a real bounded function)      166.B
Variation(s) of parameters, Lagrange method of      252.D
Variation(s) of parameters, method of      App. A Table
Variation(s) one-parameter      178.A
Variation(s) positive (of a mapping)      246.H
Variation(s) positive (of a real bounded function)      166.B
Variation(s) proper      279.F
Variation(s) quadratic, process      406.B
Variation(s) second formula      178.A
Variation(s) total (of a finitely additive vector measure)      443.G
Variation(s) total (of a mapping)      246.H
Variation(s) total (of a real bounded function)      166.B
Variation(s) total (of a set function)      380.B
Variation(s) upper      380.B
Variation(s), calculus of      46
Variation(s), calculus of, classical theory of      46.C
Variation(s), calculus of, conditional problems in      46.A
Variation(s), calculus of, fundamental lemma in      46.B
Variation(s), coefficient of      397.C
Variation(s), of constants, Lagrange’s method of      252.D
Variation(s), of constants, method of      55.B 252.I
Variational derivative      46.B
Variational equation      316.F 394.C
Variational formula, constant      163.E
Variational inequality      440
Variational inequality, of evolution      440.C
Variational inequality, stationary      440.B
Variational method      438.B
Variational principles(s)      441
Variational principles(s) (in ergodic theory)      136.G
Variational principles(s) (in statistical mechanics)      340.B 402.G
Variational principles(s) (in the theory of elasticity)      271.G
Variational principles(s) for the topological pressure      136.H
Variational principles(s) with relaxed continuity requirements      271.G
Variational problem, Gauss      338.J
Variety (algebraic variety)      16.A
Variety (of block design)      102.B
Variety Abelian      3
Variety Abelian, isogeneous      3.C
Variety Abelian, polarized      3.G
Variety Abelian, simple      3.B
Variety abstract      16.C
Variety abstract algebraic      16.C
Variety affine      16.A
Variety affine algebraic      16.A
Variety Albanese      16.P
Variety Albanese (of a compact Kaehler manifold)      232.C
Variety algebraic      16
Variety algebraic group      13.B
Variety Brieskorn      418.D
Variety characteristic (of a microdifferential equation)      274.G
Variety Chow      16.W
Variety complex algebraic      16.T
Variety generalized Jacobian      9.F 11.C
Variety group      13.B 16.H
Variety irreducible      16.A
Variety Jacobian      9.E 11.C 16.P
Variety Landau      146.C
Variety Landau — Nakanishi      146.C 386.C
Variety linear (in an $\Omega$-module)      422.L
Variety linear, linearly compact      422.L
Variety minimal      275.G
Variety nonsingular      16.F
Variety normal      16.F
Variety normal algebraic      16.F
Variety Picard      16.P
Variety Picard (of a compact Kaehler manifold)      232.C
Variety prealgebraic      16.C
Variety product algebraic      16.A
Variety projective      16.A
Variety projective algebraic      16.A
Variety quasi-affine algebraic      16.C
Variety quasiprojective algebraic      16.C
Variety rational      16.J
Variety reducible      16.A
Variety Schubert      56.E
Variety smooth      16.F
Variety strict Albanese      16.P
Variety toric      16.Z
Variety unirational      16.J
Variety Zariski topology of a      16.A
Variety, almost all points of a      16.A
Variety, function on a      16.A
Variety, rational function on a      16.A
Varifold      275.G
Varopoulos, Nicholas Theodoros      192.U
Varopoulos, T.      17.C 267.r
Varouchas, J.      232.C
Varshamov — Gilbert — Sacks bound      63.B
Varshamov, Rom Rubenovich(1927-)      63.B
Vasilesco, Florin(1897-1958)      120.D
Vaughan, Robert Charles      123.E
Vaught, Robert L.      276.D 276.F
Veblen, Oswald(1880-1960)      90.r 109.* 109.r 137 152.C 201.r 343.r 434.C 434.r
Vector algebra      App. A Table
Vector analysis and coordinate systems      App. A Table
Vector bundle      147.F
Vector bundle (algebraic)      16.Y
Vector bundle ample      16.Y
Vector bundle complex      147.F
Vector bundle cotangent      147.F
Vector bundle dual      147.F
Vector bundle indecomposable      16.Y
Vector bundle normal      105.L
Vector bundle normal k-      114.J
Vector bundle quaternion      147.F
Vector bundle semistable      16.Y
Vector bundle stable      16.Y 237.B
Vector bundle stably equivalent      237.B
Vector bundle tangent      105.H 147.F
Vector field (in a 3-dimensional Euclidean space)      442.D
Vector field (on a differentiable manifold)      105.M
Vector field Anosov      126. J
Vector field Axiom A      126.J
Vector field basic      80.H
Vector field contravariant      105.O
Vector field covariant      105.O
Vector field differentiation of      App. A Table
Vector field formal      105.AA
Vector field fundamental      191.A
Vector field G-      237.H
Vector field Hamiltonian      126.L 219.C
Vector field holomorphic      72.A
Vector field irrotational      442.D
Vector field Killing      364.F
Vector field Lagrangian      126.L
Vector field lamellar      442.D
Vector field Morse — Smale      126.J
Vector field of class $C^r$      105.M
Vector field solenoidal      442.D
Vector field variation      178.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте