Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sapiro      see Shapiro
Sapronov, Yu.I.      286.r
Sarason, Donald Erik(1933-)      164.K 164.r
Sard theorem      105.J 208.B
Sard — Smale theorem      286.P
Sard, Arthur(1909-1980)      105.J 208.B 286.P
Sargsyan(Sargsjan), L.S.      315.r
Sarhan, Ahmed E.      374.r
Saribekovich, Sargsyan Iskhan(1931-)      315.r
Sario, Leo Reino(1916-)      48.r 77.E 77.r 124.C 124.r 169.r 207.r 367.E 367.G 367.r
Sarton, George Alfred Leon(1884-1956)      26.r 209.r 372.r
Sasaki — Nitsche formula, Gauss — Bonnet —      275.C
Sasaki, Shigeo(1912-)      110.E 275.C 365.J
Sasakian manifold      110.E
Sasieni, Maurice W.      307.r
Sataev, E.A.      136.F 136.r
Satake diagram      App. A Table
Satake diagram (of a compact symmetric Riemannian space)      437.AA
Satake diagram (of a real semisimple Lie algebra)      248.U
Satake, Ichiro(1927-)      13.r 16.Z 21.Q 32.F 59.H 122.r 248.U 248.r 384.r 437.AA
Satellite left      200.I
Satellite right      200.I
Satisfiability, problem of (of a proposition)      97
Satisfiable (formula)      276.C
Sato conjecture      450.S
Sato — Bernshtein polynomial      125.EE
Sato, Atsushi(1954-)      154.H
Sato, Fumihiro(1949-)      450.V
Sato, Ken-iti(1934-)      115.C 115.D 263.r
Sato, Mikio(1928-)      20 112.D 125.A 125.V 125.W 125.BB 125.EE 146.A 146.C 162.* 162.r 274.I 345.B 386.C 387.C 418.H 450.A 450.M 450.Q 450.S 450.V
Sato, Tokui(1906-1983)      217.r 288.B
Sattinger, David H.      126.M 286.r
Saturated ((B,N)-pair)      151.J
Saturated (fractional factorial design)      102.I
Saturated model, k-      293.B
Savage theorem, Girshick —      399.F
Savage zero-one law, Hewitt —      342.G
Savage, I.Richard(1925-)      371.A 371.C 371.r
Savage, John E.      71.r
Savage, Leonard Jimmie(1917-1971)      342.G 399.F 399.r 401.B 401.F
Savings premium      214.B
Sawada, Ken(1953-)      126.J
Sawashima, Ikuko(1929-)      310.H
Saxer, Walter(1896-1974)      214.r
Sazonov topology      341J
Sazonov, Vyachcslav Vasil’evich(1935-)      341.J
Scalar change (of a B-module)      277.L
Scalar curvature      364.D App. Table
Scalar extension (of a linear representation)      362.F
Scalar extension (of an A -module)      277.L
Scalar extension (of an algebra)      29.A
Scalar field      105.O
Scalar field (in a 3-dimensional Euclidean space)      442.D
Scalar field free      377.C
Scalar integral      443.F 443.I
Scalar matrix      269.A
Scalar multiple (in a linear space)      256.A
Scalar multiple (of a linear operator)      37.C
Scalar multiple (of a vector)      442.A
Scalar multiple (of an element of a module)      277.D
Scalar multiplication (in a module)      277.D
Scalar multiplication (on vectors)      442.A
Scalar operator      390.K
Scalar potential      130.A 442.D
Scalar product      442.B App. Table
Scalar restriction (of a B-module)      277.L
Scalar sum (of linear operators)      37.C
Scalar triple product      442.C
Scalar(s) (in a linear space)      256.A 256.J
Scalar(s) (of a module over a ring)      277.D
Scalar(s), field of (of a linear space)      256.A
Scalar(s), ring of (of a module)      277.D
Scalarly integrable      443.F 443.I
Scalarly measurable      443.B 443.I
Scale canonical      115.B
Scale matrix      374.C
Scale natural      260.G
Scale of Banach space      286.Z
Scale ordinal      397.M
Scale parameter      396.I 400.E
Scale two-sided      19.D
Scaled, $u_i$-      19.D
Scaling method      346.E
Scaling, metric multidimensional      346.E
Scaling, multidimensional      346.E
Scarf, Herbert Ely(1930-)      173.E 227.r
Scatter diagram      397.H
Scattered (sheaf)      383.E
Scattered set      425.O
Scattered zeros, function with      208.C
Scattering      375.A
Scattering amplitude      375.C 386.B
Scattering amplitude partial wave      375.E
Scattering cross section      375.A
Scattering data      387.D
Scattering elastic      375.A
Scattering inelastic      375.A
Scattering operator      375.B 375.F 375.H
Scattering state      375.B
Scattering state, completeness of the      150.D
Scattering theory, Haag — Ruelle      150.D
Scegol’kov      see Shchegol’kov
Schaaf, Manfred      258.r
Schade, J.P.      95.r
Schaefer, Helmut(1925-)      217.r 310.A 310.H
Schaeffer, Albert Charles(1907-)      438.B 483.C
Schaefke, Friedrich Wilhelm(1922-)      268.r 389.r
Schafheitlin formula, Sonine —      App. A Table
Schafheitlin, Paul(1861-)      App.A Table
Schaible, Siegfried      264.r
Schapira, Pierre M.(1943-)      112.D 125.Y 162
Schark, I.J.      164.I
Schatten, Robert(1911-1977)      68.I
Schauder basis      37.L
Schauder degree, Leray —      286.D
Schauder estimate      323.C
Schauder fixed-point theorem      153.D 286.D
Schauder fixed-point theorem Leray —      286.D 323.D
Schauder theorem, Riesz —      68.E
Schauder, Juliusz Pawel(1899-1943)      37.L 68.E 153.D 286.D 323.C 323.D 323.r 325.C 325.r
Schechter, Martin(1930-)      112.F 112.H 189.B 320.r 323.H
Scheduling      376
Scheduling and production planning      376
Scheduling job-shop      307.C
Scheduling model      307.C
Scheduling network      307.C
Scheduling problem flow-shop      376
Scheduling problem job-shop      376
Scheduling problem machine      376
Scheduling problem multiprocessor      376
Scheffe model      346.C
Scheffe theorem, Lehmann —      399.C
Scheffe, Henry(1907-1977)      102.r 346.C 399.C 399.r
Scheffers, Georg(1866-1945)      247.r
Scheifele, Gerhard      55.r
Scheinberg, Stephen      164.K
Scheja theorem      21.M
Scheja, Giinter(1932-)      21.M 21.r
Schema of Souslin      22.B
Scheme      16.D
Scheme adaptive      299.C
Scheme affine      16.D
Scheme Aitken’s interpolation      223.B
Scheme algebraic      16.D
Scheme automatic integration      299.C
Scheme coarse moduli      16.W
Scheme complete      16.D
Scheme consistent-mass      304.D
Scheme deformation of X over a connected      16.W
Scheme difference      304.E
Scheme difference, of backward type      304.F
Scheme difference, of forward type      304.F
Scheme explicit      304.F
Scheme fine moduli      16.W
Scheme formal      16.X
Scheme Friedrichs      304.F
Scheme group      16.H
Scheme Hilbert      16.S
Scheme implicit      304.F
Scheme integral      16.D
Scheme inverted filing      96.F
Scheme irreducible      16.D
Scheme K-complete      16.D
Scheme Lax — Wendroff      304.F
Scheme locally Noetherian formal      16.X
Scheme moduli      16.W
Scheme Noetherian      16.D
Scheme nonadaptive      299.C
Scheme Over S      16.D
Scheme Picard      16.P
Scheme projective      16.E
Scheme quasiprojective      16.E
Scheme S-      16.D
Scheme separated      16.D
Scheme separated formal      16.X
Scheme, morphism of      16.D
Scherk, Heinrich Ferdinand      275.A
Scherk, John(1947-)      132.r
Scherk, Peter(1910-1985)      4.A
Scherk’s surface      275.A
Schetzen, Martin      95.r
Schickard, Wilhelm(1592-1635)      75.A
Schiffer, Menahem Max(1911-)      77.E 77.r 188.r 367.r 438.B 438.C
Schiffman, M.      275.B
Schilling, Otto Franz Georg(1911-1973)      257.r 439.r
Schlaefli diagram (of a complex semisimple Lie algebra)      248.S
Schlaefli formula      App. A Table
Schlaefli integral representation      393.B
Schlaefli polynomial      App. A Table
Schlafli, Ludwig(1814-1895)      105.A 248.S 393.B App.A Tables IV
Schlaifer, Robert      398.r
Schlesinger equations      253.E
Schlesinger, Ludwig(1864-1933)      253.E 253.r
Schlessinger, Michael      16.r
Schlicht      438.A
Schlicht Bloch constant      77.F
Schlichtartig      367.G
Schlichting, Hermann(1907-)      205.r 433.A
Schlieder theorem, Reeh —      150.E
Schlieder, Siegfried(1918-)      150.E
Schloemilch criterion      App. A Table
Schloemilch remainder, Roche —      App. A Table
Schloemilch series      39.D App. Table
Schloemilch series generalized      39.D
Schlomilch, Otto      39.D App.A Tables 10.II 19.III
Schmeidler, David      173.D
Schmetterer, Leopold(1919-)      399.N
Schmid, Hermann Ludwig(1908-1956)      59.H
Schmid, Wilfried(1943-)      16.r 437.W
Schmidt class, Hilbert —      68.I
Schmidt condition      379.M
Schmidt expansion theorem, Hilbert —      217.H
Schmidt norm, Hilbert —      68.I
Schmidt orthogonalization      317.A
Schmidt orthogonalization Gram —      317.A
Schmidt procedure, Lyapunov —      286.V
Schmidt theorem      118.D
Schmidt theorem, Knopp —      208.C
Schmidt theorem, Krull — Remak — (in group theory)      190.L
Schmidt type, integral operator of Hilbert —      68.C
Schmidt type, kernel of Hilbert —      217.I
Schmidt, Erhald(1876-1959)      68.C 68.I 139.G 217.H 217.I 286.V 302.E 317.A 445
Schmidt, Friedrich Karl(1901-1977)      12.B 59.G 450.P
Schmidt, O.Y.      see Shmidt
Schmidt, Robert(1898-1964)      208.C 379.M
Schmidt, Wolfgang M.(1933-)      83.r 118.B 118.D 118.r 182.G 182.r 354.r 430.C 437.W
Schnee theorem, Knopp — (on method of summation)      379.M
Schnee, Walter      379.M
Schneider, Michael(1942-)      16.r
Schneider, Theodor(1911-)      182.r 196 430.A 430.B 430.r
Schober, Glenn E.(1938-)      438.r
Schoen, Richard M.(1950-)      275.D 275.F 364.r
Schoenberg, Isaac Jacob(1903-)      178.A
Schoenfeld, Lowell(1920-)      328
Schoenfinkel, M.      97.*
Schoenflies notation (for crystal classes)      92.E App. Table
Schoenflies problem      65.G
Schoenflies theorem      65.G
Schoenflies, Arthur Moritz(1853-1928)      47.r 65.G 92.E 92.F 93.D 93.K 122.H 381.r App.B Table
Schoenhage, Arnold      298.r
Scholtz, Arnold      59.F
Schopf, Andreas      200.I
Schottky group      234.B
Schottky theorem      43.J
Schottky uniformization      367.C
Schottky, Friedrich Hermann(1851-1935)      9.J 43.J 234.B 367.C
Schouten, Jan Arnoldus(1883-1971)      109.* 109.r 137 417.r 428.r 434.C
Schrader axioms, Osterwalder —      150.F
Schrader, Robert(1939-)      150.F
Schreier conjecture (on simple groups)      151.I
Schreier extension, Artin — (of a field)      172.F
Schreier, Otto(1901-1929)      7.r 28 151.A 151.I 161.A 172.F 190.G 190.N 200.M 256.r 343.r 350.r
Schroeder equation, Koenigs —      44.B
Schroeder functional equation      388.D
Schroeder, A.      156.B
Schroeder, Friedrich Wilhelm Karl Ernst(1841-1902)      44.B 388.D 411.A
Schroedinger equation      351.D
Schroedinger equation 1-body      351.E
Schroedinger equation random      340.E
Schroedinger equation time-dependent      351.D
Schroedinger equation time-independent      351.D
Schroedinger operator      351.D
Schroedinger picture      351.D
Schroedinger representation      351.C
Schroedinger series, Rayleigh —      331.D
Schroedinger, Erwin(1887-1961)      331.A 331.D 340.E 351.C 351.D 434.C
Schubauer, G.B.      433.A
Schubert cycle      56.E
Schubert variety      56.E
Schubert, Hermann(1848-1911)      56.E 201.r
Schubert, Horst(1919-)      235.A
Schuette, Kurt(1909-)      97.* 156.E 156.r
Schur index (of a central simple algebra)      29.E
Schur index (of an irreducible representation)      362.F
Schur lemma (on linear representations)      362.C
Schur lemma (on simple modules)      277.H 368.G
Schur lemma (on unitary representations)      437.D
Schur subgroup      362.F
Schur theorem (on linear transformations of sequences)      379.L
Schur theorem, Kojima — (on linear transformations of sequences)      379.L
Schur — Zassenhaus theorem (on Hall subgroups)      151.E
Schur, Friedrich Heinrich(1856-1932)      364.D
Schur, Issai(1875-1941)      29.E 43.J 122.C 122.E 122.F 122.H 122.r 151.E 226.r 277.H 295.E 368.G 379.L 437.D 437.EE App.B Table
Schuur, Jerry Dee(1936-)      290.r
Schwank, Friedrich(1900-)      217.r
Schwartz integral, Bartle — Dunford —      443.G
Schwartz space      424.S
Schwartz — Christoffel transformation      77.D App. Table
Schwartz — Christoffel transformation formula      77.D
Schwartz, Arthur J.(1932-)      126.I
Schwartz, Jacob Theodore(1930-)      37.r 68.M 112.I 112.O 136.B 136.r 286.r 308.F 308.r 310.r 315.r 331.r 378.r 390.r 443.A 443.G 443.r
Schwartz, Laurent(1915-)      20.* 20.r 68.r 94.r 112.D 112.r 125.A 125.B 125.L 125.r 160.r 162.* 162.r 168.r 189.r 192.M 240.r 262.r 270.I 306.A 322.r 424.R 424.S 424.X 424.r
Schwartz, Richard      280.r
Schwarz inequality      211.C
Schwarz inequality Cauchy —      211.C App. Table
Schwarz lemma      43.B
Schwarz principle of reflection      198.G
Schwarz, Hermann Amandus(1843-1921)      11.D 43.B 77.D 106.H 109 198.G 211.C 246.B 275.B 275.F 334.C App.A Tables 9.III 13.III
Schwarzenberger, Rolph Ludwig Edward(1936-)      92.r
Schwarzian derivative      App. A Table
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте