|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
 |
Предметный указатель |
Submersion 105.L
Submodular 66.F
Submodule A- 277.C
Submodule allowed 277.C
Submodule complementary 277.H
Submodule homogeneous A- (of a graded A-module) 200.B
Submodule primary 284.A
Subnet 87.H
Subnet cofinal 87.H
Subnormal (operator in a Hilbert space) 251.K
Subnormal subgroup 190.G
Subobject 52.D
Subordinate 105.D 437.T
Subordination 5 261.F
Subordination of the th order 261.F
Subordinator of the exponent 5.F
Subproblems 215.D
Subramanyam, K. 399.O
Subrepresentation (of a linear representation) 362.C
Subrepresentation (of a projective representation) 362.J
Subrepresentation (of a unitary representation) 437.C
Subring 368.E
Subring differential 113
SUBROUTINE 75.C
Subscripts, raising 417.D
Subsequence 165.D
Subsequence - 354.D
Subset(s) 381.A
Subset(s) (in axiomatic set theory) 33.B
Subset(s) analytic (of a complex manifold) 72.E
Subset(s) Borel 270.C
Subset(s) circled (of a linear topological space) 424.E
Subset(s) cofinal 311.D
Subset(s) G- 362.B
Subset(s) k- 330
Subset(s) proper 381.A
Subset(s) residual 311.D
Subset(s), axiom of 33.B 381.G
Subshift 126.J
Subshift Markov 126.J
Subshift of finite type 126.J
Subsidiary equation, Charpit 82.C 320.D
Subsonic (Mach number) 205.B
Subsonic flow 326.A
Subspace (of a linear space) 256.F
Subspace (of a projective space) 343.B
Subspace (of a topological space) 425.J
Subspace (of an affine space) 7.A
Subspace analytic 23.C 23.G
Subspace closed linear (of a Hilbert space) 197.E
Subspace complementary (of a linear subspace) 256.F
Subspace horizontal 191.C
Subspace ingoing 375.H
Subspace invariant (of a linear operator) 251.L
Subspace involutive 428.F
Subspace linear (of a linear space) 256.F
Subspace metric 273.B
Subspace n-particle 377.A
Subspace orthogonal (determined by a linear subspace) 256.G
Subspace orthogonal (of a linear space) 139.G
Subspace outgoing 375.H
Subspace parallel (in an affine space) 7.B
Subspace parallel, in the narrower sense (in an affine space) 7.B
Subspace parallel, in the wider sense (in an affine space) 7.B
Subspace precompact (metric) 273.B
Subspace principal (of a linear operator) 390.B
Subspace root (of a linear operator) 390.B
Subspace root (of a semisimple Lie algebra) 248.K
Subspace singular (of a singular projective transformation) 343.D
Subspace totally bounded (metric) 273.B
Subspace totally isotropic (relative to an -Hermitian form) 60.O
Subspace totally isotropic (with respect to a quadratic form) 348.E
Subspace totally singular (with respect to a quadratic form) 348.E
Subspace U-invariant (of a representation space of a unitary representation 437.C
Subspace uniform 436.E
Substituted distribution 125.Q
Substitution (of a hyperfunction) 125.X 274.E
Substitution back 302.B
Substitution Frobenius (of a prime ideal) 14.K
Substitution, axiom of 381.G
Subsystem (of an algebraic system) 409.C
Subsystem closed (of a root system) 13.L
Subtraction 361.B
Subtraction terms 361.B
Subvariety, Abelian 3.B
Successive approximation, method of (for an elliptic partial differential equation) 323.D
Successive approximation, method of (for Fredholm integral equations of the second kind) 217.D
Successive approximation, method of (for ordinary differential equations) 316.D
Successive minima (in a lattice) 182.C
Successive minimum points 182.C
Successive overrelaxation (SOR) 302.C
Successor (of a natural number) 294.B
Successor (of an element in an ordered set) 311.B
Suessmilch, Johann Peter(1707-1767) 401.E
Suetuna, Zyoiti(1898-1970) 242.B 295.D 450.E
Sufficiency prediction 396.J
Sufficiency, principle of 401.C
Sufficient ( -field, statistic) Bayes 396.J
Sufficient D- 396.J
Sufficient decision theoretically 396.J
Sufficient minimal 396.E
Sufficient pairwise 396.F
Sufficient test 396.J
Sufficiently many irreducible representations 437.B
Sugawara, Masao(1902-1970) 73.A
Sugie, Toru(1952-) 15.H
Sugimoto(Goto), Midori(1944-) 178.r
Suita, Nobuyuki(1933-) 77.E
Sukhatme, Balkrishna Vasudeo(1924-1979) 373.r
Sukhatme, Pandurang Vasudeo 373.r
Sullivan, Dennis Parnell(1941-) 65.C 114.J 114.L 154.H 154.r 234.E
Sum (=union of sets) 33.B 381.B
Sum (a function) 104.B
Sum (of a divergent series by a summation) 379.L
Sum (of a quadrangular set of six points) 343.C
Sum (of a series) 379.A
Sum (of convergent double series) 379.E
Sum (of elements of a group) 190.A
Sum (of elements of a linear space) 256.A
Sum (of ideals) 67.B
Sum (of linear operators) 251.B
Sum (of linear subspaces) 256.F
Sum (of matrices) 269.B
Sum (of ordinal numbers) 312.C
Sum (of potencies) 49.C
Sum (of real numbers) 355.A
Sum (of submodules) 277.B
Sum (of vectors) 442.A
Sum amalgamated 52.G
Sum Baer (of extensions) 200.K
Sum cardinal (of a family of ordered sets) 311.F
Sum Cauchy (of a series) 379.A
Sum connected (of 3-manifolds) 65.E
Sum connected (of oriented compact -manifolds) 114.F
Sum constant- (game) 173.A
Sum Darboux 216.A
Sum Dedekind 328.A
Sum diagonal (of a matrix) 269.F
Sum diagonal partial (of a double series) 379.E
Sum disjoint 381.B
Sum event 342.B
Sum fiber 52.G
Sum Gaussian 295.D 450.C
Sum general-(game) 173.A
Sum indefinite (of a function) 104.B
Sum Kloosterman 32.C
Sum local Gaussian 450.F
Sum logical (of propositions) 411.B
Sum of products 216.A
Sum ordinal (of a family of ordered sets) 311.G
| Sum orthogonality for a finite 19.G 317.D
Sum over states 402.D
Sum partial (of a series) 379.A
Sum Ramanujan 295.D
Sum Riemann 216.A
Sum scalar (of linear operators) 37.C
Sum theorem for dimension 117.C
Sum topological 425.M
Sum trigonometric 4.C
Sum Whitney (of vector bundles) 147.F
Sum zero (game) 173.A
Sum zero-, two-person game 108.B
Sumihiro, Hideyasu(1941-) 16.Z
Summable - 379.O
Summable - 379.O
Summable (H,p)- 379.M
Summable (R,k)- 379.S
Summable A- 379.N
Summable absolute Borel 379.O
Summable by Abel’s method 379.N
Summable by Borel’s exponential method 379.O
Summable by Borel’s integral method 379.O
Summable by Cesaro’s method of order 379.M
Summable by Euler’s method 379.P
Summable by Hoelder’s method of order p 379.M
Summable by Noerlund’s method 379.Q
Summable by Riesz’s method of order k 379.R
Summable pth power, operator of 68.K
Summable T- 379.L
Summand, direct (of a direct sum of sets) 381.E
Summation - 379.M
Summation Abel’s partial 379.D
Summation Cesaro’s method of, of order 379.M
Summation convention, Einstein’s 417.B
Summation formula Euler 295.E
Summation formula Poisson (on a locally compact Abelian group) 192.L
Summation formula Poisson (on Fourier transforms) 192.C
Summation of a function 104.B
Summation Riesz’s method of, of the kth order 379.R
Summation, Abel’s method of 379.N
Summation, Borel’s method of 379.N
Summation, Euler’s method of 379.P
Summation, Lebesgue’s method of 379.S
Summation, methods of 379.L
Summation, Noerlund’s method of 379.Q
Summation, Riemann’s method of 379.S
Summing, absolutely (operator) 68.N
Sunada, Toshikazu(1948-) 195.r 391.C
Sundman theorem 420.C
Sundman, Karl Frithiof(1873-1949) 420.C
Sunouchi, Gen-ichiro(1911-) 159.G 159.H 310.r 336.D
Sunzi(c.3rd century) 57.A
Sup (supremum) 311.B
Superabundance (of a divisor on an algebraic surface) 15.D
Superadditive 173.D
Superconductivity 130.B
Supercritical (Galton — Watson process) 44.B
Superefficient estimator 399.N
Superharmonic (function) 193.P 260.D
Superharmonic measure 260.I
Superharmonic transformation 261.F
Superior function, right 316.E
Superior limit (of a sequence of real numbers) 87.C
Superior limit (of a sequence of subsets of a set) 270.C
Superior limit event 342.B
Supermartingale 262.A
Supermultiplet theory 351.J
Superposition, principle of 252.B 322.C
Superregular function 260.D
Superrenormalizable 150.C
Superscripts, lowering 417.D
Superselection rule, univalence 351.K
Superselection sector 150.E 351.K
Supersolvable group 151.D
Supersonic 205.B 326.A
Supplementary angles 139.D
Supplementary interval 4.B
Supplementary series 258.C
Supplementation-equal polygons 155.F
Supplemented algebra 200.M
Support (of a coherent sheaf) 16.E
Support (of a differential form) 105.Q
Support (of a distribution) 125.D
Support (of a function) 125.B 168.B 425.R
Support (of a section of a sheaf) 383.C
Support (of a spectral measure) 390.D
Support compact (of a singular q-cochain) 201.P
Support essential (of a distribution) 274.D
Support singular (of a distribution) 112.C
Support singular (of a hyperfunction) 125.W
Supporting function 125.O
Supporting functional (of a convex set) 89.G
Supporting half-space (of a convex set) 89.A
Supporting hyperplane (of a convex set) 89.A
Supporting line (of an oval) 89.C
Supporting line function (of an oval) 89.C
Supporting point (of a convex set) 89.G
Supporting point (of a projective frame) 343.C
Supremum (of a set of Hermitian operators) 308.A
Supremum (of a subset of a vector lattice) 310.C
Supremum (of an ordered set) 168.B
Supremum essential (of a measurable function) 168.B
Supremum norm 168.B
Supremum theorem, Hardy — Littlewood App. A Table
Suranyi, Janos(1918-) 97.B
Sure event 342.B
Surely, almost 342.B 342.D
Surface area of unit hypersphere App. A Table
Surface element 324.B
Surface harmonics 393.A
Surface integral 94.A 94.E
Surface integral (with respect to a surface element) 94.E
Surface wave 446
Surface(s) 111.A 410 App. Table
Surface(s) Abelian 15.H
Surface(s) abstract Riemann 367.A
Surface(s) affine minimal 110.C
Surface(s) algebraic 15
Surface(s) basic (of a covering surface) 367.B
Surface(s) branched minimal 275.B
Surface(s) center 111.I
Surface(s) characteristic 320.B
Surface(s) circular cylindrical 350.B
Surface(s) closed 410.B
Surface(s) closed (in a 3-dimensional Euclidean space) 111.I
Surface(s) closed convex 111.I
Surface(s) conical 111.I
Surface(s) covering 367.B
Surface(s) covering, Ahlfors theory of 367.B
Surface(s) covering, with relative boundary 367.B
Surface(s) cylindrical 111.I
Surface(s) degenerate quadric 350.B
Surface(s) developable 111.I App. Table
Surface(s) Dini 111.I
Surface(s) elliptic 72.K
Surface(s) elliptic cylindrical 350.B
Surface(s) energy 126.L 402.C 402.G
Surface(s) Enneper 275.B
Surface(s) Enriques 72.K
Surface(s) enveloping 111.I
Surface(s) equipotential 193.J
Surface(s) Frechet 246.I
Surface(s) G- 178.H
Surface(s) helicoidal 111.I
Surface(s) Hilbert modular 15.H
Surface(s) Hirzebruch 15.G
Surface(s) Hopf 72.K
Surface(s) hyperbolic cylindrical 350.B
Surface(s) hyperelliptic 72.K
Surface(s) initial 321.A
|
|
 |
Реклама |
 |
|
|