Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Submersion      105.L
Submodular      66.F
Submodule A-      277.C
Submodule allowed      277.C
Submodule complementary      277.H
Submodule homogeneous A- (of a graded A-module)      200.B
Submodule primary      284.A
Subnet      87.H
Subnet cofinal      87.H
Subnormal (operator in a Hilbert space)      251.K
Subnormal subgroup      190.G
Subobject      52.D
Subordinate      105.D 437.T
Subordination      5 261.F
Subordination of the $\alpha$th order      261.F
Subordinator of the exponent $\alpha$      5.F
Subproblems      215.D
Subramanyam, K.      399.O
Subrepresentation (of a linear representation)      362.C
Subrepresentation (of a projective representation)      362.J
Subrepresentation (of a unitary representation)      437.C
Subring      368.E
Subring differential      113
SUBROUTINE      75.C
Subscripts, raising      417.D
Subsequence      165.D
Subsequence $\varphi$-      354.D
Subset(s)      381.A
Subset(s) (in axiomatic set theory)      33.B
Subset(s) analytic (of a complex manifold)      72.E
Subset(s) Borel      270.C
Subset(s) circled (of a linear topological space)      424.E
Subset(s) cofinal      311.D
Subset(s) G-      362.B
Subset(s) k-      330
Subset(s) proper      381.A
Subset(s) residual      311.D
Subset(s), axiom of      33.B 381.G
Subshift      126.J
Subshift Markov      126.J
Subshift of finite type      126.J
Subsidiary equation, Charpit      82.C 320.D
Subsonic (Mach number)      205.B
Subsonic flow      326.A
Subspace (of a linear space)      256.F
Subspace (of a projective space)      343.B
Subspace (of a topological space)      425.J
Subspace (of an affine space)      7.A
Subspace analytic      23.C 23.G
Subspace closed linear (of a Hilbert space)      197.E
Subspace complementary (of a linear subspace)      256.F
Subspace horizontal      191.C
Subspace ingoing      375.H
Subspace invariant (of a linear operator)      251.L
Subspace involutive      428.F
Subspace linear (of a linear space)      256.F
Subspace metric      273.B
Subspace n-particle      377.A
Subspace orthogonal (determined by a linear subspace)      256.G
Subspace orthogonal (of a linear space)      139.G
Subspace outgoing      375.H
Subspace parallel (in an affine space)      7.B
Subspace parallel, in the narrower sense (in an affine space)      7.B
Subspace parallel, in the wider sense (in an affine space)      7.B
Subspace precompact (metric)      273.B
Subspace principal (of a linear operator)      390.B
Subspace root (of a linear operator)      390.B
Subspace root (of a semisimple Lie algebra)      248.K
Subspace singular (of a singular projective transformation)      343.D
Subspace totally bounded (metric)      273.B
Subspace totally isotropic (relative to an $\varepsilon$-Hermitian form)      60.O
Subspace totally isotropic (with respect to a quadratic form)      348.E
Subspace totally singular (with respect to a quadratic form)      348.E
Subspace U-invariant (of a representation space of a unitary representation      437.C
Subspace uniform      436.E
Substituted distribution      125.Q
Substitution (of a hyperfunction)      125.X 274.E
Substitution back      302.B
Substitution Frobenius (of a prime ideal)      14.K
Substitution, axiom of      381.G
Subsystem (of an algebraic system)      409.C
Subsystem closed (of a root system)      13.L
Subtraction      361.B
Subtraction terms      361.B
Subvariety, Abelian      3.B
Successive approximation, method of (for an elliptic partial differential equation)      323.D
Successive approximation, method of (for Fredholm integral equations of the second kind)      217.D
Successive approximation, method of (for ordinary differential equations)      316.D
Successive minima (in a lattice)      182.C
Successive minimum points      182.C
Successive overrelaxation (SOR)      302.C
Successor (of a natural number)      294.B
Successor (of an element in an ordered set)      311.B
Suessmilch, Johann Peter(1707-1767)      401.E
Suetuna, Zyoiti(1898-1970)      242.B 295.D 450.E
Sufficiency prediction      396.J
Sufficiency, principle of      401.C
Sufficient ($\sigma$-field, statistic) Bayes      396.J
Sufficient D-      396.J
Sufficient decision theoretically      396.J
Sufficient minimal      396.E
Sufficient pairwise      396.F
Sufficient test      396.J
Sufficiently many irreducible representations      437.B
Sugawara, Masao(1902-1970)      73.A
Sugie, Toru(1952-)      15.H
Sugimoto(Goto), Midori(1944-)      178.r
Suita, Nobuyuki(1933-)      77.E
Sukhatme, Balkrishna Vasudeo(1924-1979)      373.r
Sukhatme, Pandurang Vasudeo      373.r
Sullivan, Dennis Parnell(1941-)      65.C 114.J 114.L 154.H 154.r 234.E
Sum (=union of sets)      33.B 381.B
Sum (a function)      104.B
Sum (of a divergent series by a summation)      379.L
Sum (of a quadrangular set of six points)      343.C
Sum (of a series)      379.A
Sum (of convergent double series)      379.E
Sum (of elements of a group)      190.A
Sum (of elements of a linear space)      256.A
Sum (of ideals)      67.B
Sum (of linear operators)      251.B
Sum (of linear subspaces)      256.F
Sum (of matrices)      269.B
Sum (of ordinal numbers)      312.C
Sum (of potencies)      49.C
Sum (of real numbers)      355.A
Sum (of submodules)      277.B
Sum (of vectors)      442.A
Sum amalgamated      52.G
Sum Baer (of extensions)      200.K
Sum cardinal (of a family of ordered sets)      311.F
Sum Cauchy (of a series)      379.A
Sum connected (of 3-manifolds)      65.E
Sum connected (of oriented compact $C^\infty$-manifolds)      114.F
Sum constant- (game)      173.A
Sum Darboux      216.A
Sum Dedekind      328.A
Sum diagonal (of a matrix)      269.F
Sum diagonal partial (of a double series)      379.E
Sum disjoint      381.B
Sum event      342.B
Sum fiber      52.G
Sum Gaussian      295.D 450.C
Sum general-(game)      173.A
Sum indefinite (of a function)      104.B
Sum Kloosterman      32.C
Sum local Gaussian      450.F
Sum logical (of propositions)      411.B
Sum of products      216.A
Sum ordinal (of a family of ordered sets)      311.G
Sum orthogonality for a finite      19.G 317.D
Sum over states      402.D
Sum partial (of a series)      379.A
Sum Ramanujan      295.D
Sum Riemann      216.A
Sum scalar (of linear operators)      37.C
Sum theorem for dimension      117.C
Sum topological      425.M
Sum trigonometric      4.C
Sum Whitney (of vector bundles)      147.F
Sum zero (game)      173.A
Sum zero-, two-person game      108.B
Sumihiro, Hideyasu(1941-)      16.Z
Summable $\mathfrak{B}$-      379.O
Summable $|\mathfrak{B}|$-      379.O
Summable (H,p)-      379.M
Summable (R,k)-      379.S
Summable A-      379.N
Summable absolute Borel      379.O
Summable by Abel’s method      379.N
Summable by Borel’s exponential method      379.O
Summable by Borel’s integral method      379.O
Summable by Cesaro’s method of order $\alpha$      379.M
Summable by Euler’s method      379.P
Summable by Hoelder’s method of order p      379.M
Summable by Noerlund’s method      379.Q
Summable by Riesz’s method of order k      379.R
Summable pth power, operator of      68.K
Summable T-      379.L
Summand, direct (of a direct sum of sets)      381.E
Summation $(C,\alpha)$-      379.M
Summation Abel’s partial      379.D
Summation Cesaro’s method of, of order $\alpha$      379.M
Summation convention, Einstein’s      417.B
Summation formula Euler      295.E
Summation formula Poisson (on a locally compact Abelian group)      192.L
Summation formula Poisson (on Fourier transforms)      192.C
Summation of a function      104.B
Summation Riesz’s method of, of the kth order      379.R
Summation, Abel’s method of      379.N
Summation, Borel’s method of      379.N
Summation, Euler’s method of      379.P
Summation, Lebesgue’s method of      379.S
Summation, methods of      379.L
Summation, Noerlund’s method of      379.Q
Summation, Riemann’s method of      379.S
Summing, absolutely (operator)      68.N
Sunada, Toshikazu(1948-)      195.r 391.C
Sundman theorem      420.C
Sundman, Karl Frithiof(1873-1949)      420.C
Sunouchi, Gen-ichiro(1911-)      159.G 159.H 310.r 336.D
Sunzi(c.3rd century)      57.A
Sup (supremum)      311.B
Superabundance (of a divisor on an algebraic surface)      15.D
Superadditive      173.D
Superconductivity      130.B
Supercritical (Galton — Watson process)      44.B
Superefficient estimator      399.N
Superharmonic (function)      193.P 260.D
Superharmonic measure      260.I
Superharmonic transformation      261.F
Superior function, right      316.E
Superior limit (of a sequence of real numbers)      87.C
Superior limit (of a sequence of subsets of a set)      270.C
Superior limit event      342.B
Supermartingale      262.A
Supermultiplet theory      351.J
Superposition, principle of      252.B 322.C
Superregular function      260.D
Superrenormalizable      150.C
Superscripts, lowering      417.D
Superselection rule, univalence      351.K
Superselection sector      150.E 351.K
Supersolvable group      151.D
Supersonic      205.B 326.A
Supplementary angles      139.D
Supplementary interval      4.B
Supplementary series      258.C
Supplementation-equal polygons      155.F
Supplemented algebra      200.M
Support (of a coherent sheaf)      16.E
Support (of a differential form)      105.Q
Support (of a distribution)      125.D
Support (of a function)      125.B 168.B 425.R
Support (of a section of a sheaf)      383.C
Support (of a spectral measure)      390.D
Support compact (of a singular q-cochain)      201.P
Support essential (of a distribution)      274.D
Support singular (of a distribution)      112.C
Support singular (of a hyperfunction)      125.W
Supporting function      125.O
Supporting functional (of a convex set)      89.G
Supporting half-space (of a convex set)      89.A
Supporting hyperplane (of a convex set)      89.A
Supporting line (of an oval)      89.C
Supporting line function (of an oval)      89.C
Supporting point (of a convex set)      89.G
Supporting point (of a projective frame)      343.C
Supremum (of a set of Hermitian operators)      308.A
Supremum (of a subset of a vector lattice)      310.C
Supremum (of an ordered set)      168.B
Supremum essential (of a measurable function)      168.B
Supremum norm      168.B
Supremum theorem, Hardy — Littlewood      App. A Table
Suranyi, Janos(1918-)      97.B
Sure event      342.B
Surely, almost      342.B 342.D
Surface area of unit hypersphere      App. A Table
Surface element      324.B
Surface harmonics      393.A
Surface integral      94.A 94.E
Surface integral (with respect to a surface element)      94.E
Surface wave      446
Surface(s)      111.A 410 App. Table
Surface(s) Abelian      15.H
Surface(s) abstract Riemann      367.A
Surface(s) affine minimal      110.C
Surface(s) algebraic      15
Surface(s) basic (of a covering surface)      367.B
Surface(s) branched minimal      275.B
Surface(s) center      111.I
Surface(s) characteristic      320.B
Surface(s) circular cylindrical      350.B
Surface(s) closed      410.B
Surface(s) closed (in a 3-dimensional Euclidean space)      111.I
Surface(s) closed convex      111.I
Surface(s) conical      111.I
Surface(s) covering      367.B
Surface(s) covering, Ahlfors theory of      367.B
Surface(s) covering, with relative boundary      367.B
Surface(s) cylindrical      111.I
Surface(s) degenerate quadric      350.B
Surface(s) developable      111.I App. Table
Surface(s) Dini      111.I
Surface(s) elliptic      72.K
Surface(s) elliptic cylindrical      350.B
Surface(s) energy      126.L 402.C 402.G
Surface(s) Enneper      275.B
Surface(s) Enriques      72.K
Surface(s) enveloping      111.I
Surface(s) equipotential      193.J
Surface(s) Frechet      246.I
Surface(s) G-      178.H
Surface(s) helicoidal      111.I
Surface(s) Hilbert modular      15.H
Surface(s) Hirzebruch      15.G
Surface(s) Hopf      72.K
Surface(s) hyperbolic cylindrical      350.B
Surface(s) hyperelliptic      72.K
Surface(s) initial      321.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте