Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Wallace, Andrew Hugh(1926-)      114.F 114.L
Wallach, Nolan R.      178.r 199.r 249.r 275.A 275.F 364.r 365.G 437.W
Wallis formula      App. A Table
Wallis test, Kruskal —      371.D
Wallis, Jennifer Seberry      241.r
Wallis, John(1616-1703)      20 265 332 App.A Table
Wallis, Walter Denis      241.r
Wallis, Wilson Allen(1912-)      371.D
Wallman, Henry(1915-)      117.r
Walsh system of orthogonal functions      317.C
Walsh, John Joseph(1948-)      117.I
Walsh, Joseph Leonard(1895-1973)      223.r 317.C 336.F 336.I
Walter, J.S.      142.C
Walter, John H.(1927-)      151.J
Walter, Wolfgang(1927-)      211.r
Walters, Peter(1943-)      136.H
Walther, Hansjoachim      186.r
Wandering      126.E
Wandering point      126.E
Wandering set      136.C
Wandering set weakly      136.C
Wandering weakly, under a group      136.E
Wang exact sequence (of a fiber space)      148.E
Wang Hsien-Chung(1918-1978)      81 110.E 148.E 152.r 199.r 413.r
Wang Xiaotong(c.early 7th century)      57.A
Wang, Ju-Kwei(1934-)      164.G
Wantzel, Pierre-Laurent(1814-1848)      179.A
Ward, Harold Nathaniel(1936-)      App.B Table
Ward, R.      16.r
Waring problem      4.E
Waring, Edward(1736-1798)      4.E
Warner.Frank Wilson, III(1938-)      364.H
Warner.Garth William Jr.(1940-)      249.r 437.r
Warning second theorem      118.B
Warning theorem      118.B
Warning, E.      118.B
Warschawski, Stefan Emanuel(1904-)      77.C
Wasan      230
Washington, A.      432.r
Washington, Lawrence Clinton(1951-)      14.L 450.J
Washio, Yasutoshi(1929-)      399.r
Washizu, Kyuichiro(1921-81)      271.r
Wasow, Wolfgang Richard(1909-)      25.B 25.r 30.r 107.r 254.r 289.E 304.r
Wassermann, Gordon      51.r
Watabe,Tsuyoshi(1934-)      431.D
Watanabe, Kinji(1946-)      323.J
Watanabe, Shinzo(1935-)      44.E 44.r 45.r 115.C 115.r 261.r 262.r 406.B 406.D 406.F
Watanabe, Takeshi(1931-)      260.J
Watari, Chinami(1932-)      336.D
Water wave(s)      205.F
Water wave(s) deep      205.F
Water wave(s) long      205.F
Water wave(s) shallow      205.F
Waternaux, Christine M.      280.r
Watson formula      39.E App. Table
Watson process Galton —      44.B
Watson process multi (k)-type Galton —      44.C
Watson transform      160.C 220.B
Watson — Nicholson formula      App. A Table
Watson, George Leo(1909-)      4.E 348.r
Watson, George Neville(1886-)      39.E 39.r 160.C 174.r 220.B 268.r 389.r App.A Tables IV NTR
Watson, H.W.      44.B 44.C 44.r
Watt, J.M.      303.r
Wave equation      325.A 446 App. Table
Wave expansion, partial      375.E 386.B
Wave front set      274.B 345.A
Wave front set analytic      274.D
Wave function      351.D
Wave function spheroidal      133.E
Wave guide      130.B
Wave number (of a sine wave)      446
Wave operator      375.B 375.H
Wave operator generalized      375.B
Wave operator incoming      375.B
Wave operator modified      375.B
Wave operator outgoing      375.B
Wave propagation      446
Wave scattering amplitude, partial      375.E
Wave steepness      205.F
Wave(s)      446
Wave(s) Alfven      259
Wave(s) capillary      205.F
Wave(s) dispersive      446
Wave(s) electromagnetic      446
Wave(s) electromagnetic, theory of      130.B
Wave(s) fast      259
Wave(s) gravity      205. F
Wave(s) gravity, long      205.F
Wave(s) longitudinal      446
Wave(s) Mach      205.B
Wave(s) partial      386.B
Wave(s) partial, expansion      375.E 386.B
Wave(s) plane      446
Wave(s) polarized      446
Wave(s) shock      205.B 446
Wave(s) sine      446
Wave(s) sinusoidal      446
Wave(s) slow      259
Wave(s) spherical      446
Wave(s) stationary      446
Wave(s) Stokes      205.F
Wave(s) surface      446
Wave(s) transverse      446
Wave(s) water      205.F
Wave(s) water, deep      205.F
Wave(s) water, long      205.F
Wave(s) water, shallow      205.F
Wavelength (of a sine wave)      446
Wayland, Harold(1909-)      298.r
WC group      118.D
Weak $C^\infty$ topology      279.C
Weak (boundary component)      77.E
Weak Bernoulli process      136.E
Weak Bernoulli process very      136.E
Weak convergence (of a sequence of submodules)      200.J
Weak convergence (of operators)      251.C
Weak convergence (of probability measures)      341.F
Weak derivative      125.E
Weak dimension (of a module)      200.K
Weak extension (of a differential operator)      112.E 112.F
Weak form of the boundary value problem (of partial differential equations)      304.B
Weak global dimension (of a ring)      200.K
Weak homotopy equivalence      202.F
Weak lacuna      325.J
Weak law of large numbers      395.B
Weak Lefschetz theorem      16.U
Weak minimum      46.C
Weak Mordell — Weil theorem      118.E
Weak operator topology      251.C
Weak potential kernel      260.D
Weak solution      204.C 323.G 378.I
Weak solution, Hopf’s      204.C
Weak star topology      37.E 424.H
Weak topology (in a cell complex)      70.D
Weak topology (on a class of measures)      338.E
Weak topology (on a direct product space)      425.K
Weak topology (on a direct sum)      425.M
Weak topology (on a locally convex space)      424.H
Weak topology (on a normed linear space)      37.E
Weak topology (relative to the pairing <E,F>)      424.H
Weak topology hereditarily      425.M
Weak type (p,q), quasi-linear operator of      224.E
Weaker (equivalence relation)      135.C
Weaker (method of summation)      379.L
Weaker (topology)      425.H
Weaker (uniformity)      436.E
Weakly 1-complete manifold      114.H
Weakly almost complex manifold      114.H
Weakly compact (linear operator)      68.M
Weakly compact cardinal number      33.E
Weakly continuous (function with values in a Banach space)      37.K
Weakly continuous representation (of a topological group)      69.B
Weakly dominated (statistical structure)      396.F
Weakly equivalent (transformations)      136.F
Weakly G-stationary (system of random variables)      395.I
Weakly hyperbolic linear (differential operator)      325.H
Weakly inaccessible (cardinal number)      33.E
Weakly inaccessible (ordinal number)      312.E
Weakly integrable      443.F
Weakly isomorphic (automorphisms)      136.E
Weakly measurable      443.B 443.I
Weakly mixing (automorphism)      136.E
Weakly modular      351.L
Weakly nonlinear differential equations      290.D
Weakly stationary process      395.A
Weakly stationary process of degree k      395.I
Weakly stationary random distribution      395.C
Weakly symmetric Riemannian space      412.J
Weakly wandering set      136.C
Weakly wandering under a group      136.F
Weakly, converge (in a normal linear space)      37.E
Weakly, converge (in a topological linear space)      424.H
Weaver, W.      403.r
Web group      234.B
Weber differential equation      167.C App. Table
Weber formula      App. A Table
Weber function      167.C App. Table
Weber — Hermite differential equation      167.C
Weber — Sonine formula      App. A Table
Weber, Claude Alain(1937-)      65.r
Weber, H.F.      39.G App.A Table
Weber, Heinrich(1842-1913)      8.r 11.B 11.r 12.B 73.A 98 167.C 236.r 363.* 363.r App.A Tables IV 20
Weber, Wilhelm Eduard(1804-1891)      363
Webster, Arthur Gordon(1863-1923)      322.r
Webster, Sidney M.(1945-)      344.F
Wedderburn theorem (on commutativity of finite fields)      149.M
Wedderburn theorem (on simple algebras on a field)      29.E
Wedderburn theorem (on simple rings)      368.G
Wedderburn — Mal’tsev theorem (on algebras)      29.F
Wedderburn, Joseph Henry Maclagan(1882-1948)      29.E 29.F 149.M 190.L 368.G
wedge      125.V
Wedge infinitesimal      125.V
Wedge product (of derived functors)      200.K
Wedge theorem, edge of the      125.W
Wehrl, Alfred(1941-)      212.r
Weierstrass $\wp$-function      134.F App. Table
Weierstrass approximation theorem      336.A
Weierstrass canonical form (of elliptic curves)      9.D
Weierstrass canonical form (of the gamma function)      174.A
Weierstrass canonical product      429.B
Weierstrass criterion for uniform convergence      435.A
Weierstrass elliptic functions      134.F App. Table
Weierstrass point      11.D
Weierstrass preparation theorem      21.E 370.B
Weierstrass sigma function      134.F
Weierstrass theorem (on compactness of subsets of $\mathbf{R}$)      355.D
Weierstrass theorem (on continuous functions on a compact set)      84.C
Weierstrass theorem (on essential singularities)      198.D
Weierstrass theorem (on expansion of meromorphic functions)      272.A
Weierstrass theorem (on transcendental entire functions)      124.B
Weierstrass theorem Lindemann —      430.D
Weierstrass theorem of double series      379.H
Weierstrass theorem, Bolzano —      140 273.F
Weierstrass theorem, Casorati — (on essential singularities)      198.D
Weierstrass zeta function      134.F
Weierstrass — Enneper formula      275.A
Weierstrass — Stone theorem      168.B
Weierstrass, K.      447
Weierstrass, K. analytic function in the sense of      198.I
Weierstrass, Karl Theodor Wilhelm(1815-1897)      9.D 11.B 11.D 20 21.A 21.E 46.C 58.C 84.C 106.B 109 120.A 134.F 140 168.B 174.A 198.D 198.I 198.N 198.Q 229.r 236 267 272.A 273.F 274.F 275.A 275.B 294.A 334.B 334.C 336.A 336.F 339.A 339.D 355.D 355.r 370.B 379.H 429.B 430.D 435.A 447 App.A Table
Weierstrass-type preparation theorem (for microdifferential operators)      274.F
Weight function (for the mean of a function)      211.C
Weight function (in numerical integration)      299.A
Weight function (in orthogonality)      317.A
Weight group (of a pair (T,K))      92.C
Weight k, automorphic form of      32.B
Weight k, Fuchsian form of      32.B
weight k, Hilbert modular form of      32.B
Weight k, Siegel modular form of      32.F
Weight lattice (of a pair (T, K))      92.C
Weight m, automorphic form of      32.A
Weight w, invariant of      226.D
Weight(s) (in a barycenter)      7.C
Weight(s) (of a covariant)      226.D
Weight(s) (of a multiple covariant)      226.E
Weight(s) (of a representation of a complex semisimple Lie algebra)      248.W
Weight(s) (of a weighted homogeneous analytic function)      418.D
Weight(s) (of an automorphic form)      32.C
Weight(s) (on a von Neumann algebra)      308.D
Weight(s) equal, principle of      402.E
Weight(s) extremal length with      143.B
Weight(s) highest (of a representation of a complex semisimple Lie algebra)      248.W
Weight(s) Kaellen — Lehmann      150.D
Weighted homogeneous (analytic function)      418.D
Weighted moving average      397.N
Weighting matrix      86.B
Weil cohomology      450.Q
Weil conjecture      450.Q
Weil conjecture Taniyama —      450.S
Weil domain      21.G
Weil group      6.E 450.H
Weil L-function      450.H
Weil measure      225.G
Weil number      3.C
Weil theorem, Borel —      437.Q
Weil theorem, Mordell —      118.E
Weil theorem, weak Mordell —      118.E
Weil — Chatelet group      118.D
Weil, Andre(1906-)      3.C 3.E 3.M 3.r 4.D 6.E 6.r 9.E 9.H 9.r 12.B 12.r 13.M 13.r 14.r 16.A 16.C 20 21.G 27.r 28 32.C 32.D 59.H 59.r 60.O 73.B 109.* 109.r 118.B 118.D 118.E 122.F 122.G 122.r 182.E 192.r 196 225.G 225.r 232.B 422.r 436.A 436.r 437.P 450.A 450.H 450.M 450.O—S 450.r
Weinberg — Salam model, Glashow —      132.D
Weinberg, B.L.      96.r
Weinberg, Louis(1919-)      282.r
Weinberg, N.      425.U
Weinberg, Steven(1933-)      132.C 132.D 132.r
Weinberger, Hans Felix(1928-)      323.r 327.r
Weingarten formula (for an isometric immersion)      365.C
Weingarten formula (in the theory of surface)      111.H App. Table
Weingarten surface      111.I
Weingarten, Leonhard Gottfried Johannes Julius(1836-1910)      111.H 111.I 365.C App.A Table
Weinstein, Alan David(1943-)      126.N 178.r
Weinstock, Robert      441.r
Weir, M.D.      425.r
Weirich formula      App. A Table
Weisberger sum rule, Adler —      132.C
Weisberger, William I.(1937-)      132.C
Weiss, Benjamin(1941-)      136.E—G
Weiss, Edwin(1927-)      14.r 200.r
Weiss, Guido Leopold(1928-)      168.B 224.r
Weiss, Lionel(1923-)      398.r
Weiss, Max L.(1933-)      43.r
Weitsman, Allen W.      272.K 272.r
Weitzenboeck, Roland W.(1885-)      226.C
Welch test      400.G
Welch, Bernard Lewis      400.G
Weldon, Edward J. Jr.      63.r
Well-behaved      36.K
Well-chained (metric space)      79.D
Well-measurable      407.B
Well-measurable $\sigma$-algebra      407.B
Well-ordered set      311.C
Well-ordering      311.C
Well-ordering theorem      34.B
Well-posed (initial value problem)      321.E
Well-posed (martingale problem)      115.C
Well-posed (problems for partial differential equations)      322.A
Wells, Raymond O’Neil.Jr.(1940-)      164.K 232.r 344.D 344.E
Welsh, James Anthony Dominic      66.r
Wendroff scheme, Lax —      304.F
Wendroff, Burton      304.F
Wentzel, Gregor(1898-)      25.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте