Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Real infinite prime divisor      439.H
Real interpolation space      224.C
Real Lie algebra      248.A
Real Lie algebra compact      248.P
Real line      355.E
Real linear space      256.A
Real monoidal transform      274.E
Real number(s)      294.E 355
Real number(s) extended      87.E
Real number(s) infinitesimal      276.E
Real number(s) irrational      294.E
Real number(s) mod l      355.D
Real number(s) nonstandard      276.E
Real number(s) rational      294.E
Real number(s), Cantor’s theory of      294.E
Real number(s), completeness of      294.E 355.B
Real number(s), connectedness of      294.E
Real number(s), continuity of      294.E
Real number(s), Dedekind’s theory of      294.E
Real part      74.A
Real prime divisor      439.H
Real projective space      343.D
Real projective space infinite-dimensional      56.B
Real quadratic field      347.A
Real quadratic form      348.A 348.C
Real representation (of a Lie group)      249.O
Real root (of an algebraic equation)      10.E
Real simple Lie algebra classical compact      248.T
Real simple Lie algebra exceptional compact      248.T
Real spectral measure      390.D
Real Stiefel manifold of k-frames      199.B
Real Stiefel of orthogonal k-frame      199.B
Real submanifold, totally      365.M
Real topological vector space      424.A
Real variable      165.C
Real-compact space      425.BB
Real-time (computation)      19.E
Real-valued functions      165.B
Real-valued measurable (cardinal)      33.F
Realizable (by a submanifold)      114.G
Realizable (for a linear representation)      362.F
Realization (of a linear time-varying system)      86.D
Realization (of an s.s. complex)      70.E
Realization (of an s.s. mapping)      70.E
Realization minimal      86.D
Realization theorem (of a homotopy group)      202.N
Realization theory      86.D
Rearrangement      168.B
Rearrangement invariant      168.B
Rebbi, Claudio      80.r
Reciprocal equation      10.C
Reciprocal linear representation (of an algebra)      362.C
Reciprocal network      282.C
Reciprocal permutation representation (of a group)      362.B
Reciprocal spiral      93.H
Reciprocity law      297.I
Reciprocity law explicit (for Hilbert norm-residue symbol)      14.R
Reciprocity law for Dedekind sums      328
Reciprocity law Gel’fand — Pyatetskii — Shapiro (on unitary representation)      437.DD
Reciprocity law of quadratic, of Jacobi symbol      297.I
Reciprocity law of quadratic, of Legendre symbol      297.I
Reciprocity law Shafarevich      257.H
Reciprocity of annihilators (in topological Abelian groups)      422.E
Reciprocity relations, Onsager’s      402.K
Reciprocity, Artin’s general law of      59.C
Reciprocity, complementary law of      14.O
Reciprocity, Fourier      160.C
Reciprocity, general law of      14.O
Reckhow, Robert A.      71.r
Record      96.B
rectangle      140
Rectangle latin      241.E
Rectangular coordinates (in a Euclidean space)      90.B
Rectangular distribution      App. A Table
Rectangular hyperbola      78.E
Rectangular hyperbolic coordinates      90.C
Rectangular matrix      269.A
Rectangular parallelepiped      140
Rectifiable (current)      275.G
Rectifiable (curve)      93.F 246.A
Rectifiable locally      143.A 246.A
Rectifying plane      111.F
Rectifying surface      111.F
Rectilinear complex      70.B
Recurrence formulas for indefinite integrals      App. A Table
Recurrence theorem      136.A 136.C
Recurrence time      260.C
Recurrence time mean      260.C
Recurrent (Levy process)      5.G
Recurrent (Markov chain)      260.B
Recurrent (Markov process)      261.B
Recurrent (nonsingular measurable transformation)      136.C
Recurrent (point of a dynamical system)      126.E
Recurrent chain      126.E 260.B
Recurrent event      250.D 260.C
Recurrent event delayed      260.C
Recurrent infinitely (measurable transformation)      136.C
Recurrent linear (sequence)      295.A
Recurrent non- (Markov chain)      260.B
Recurrent null (point)      260.B
Recurrent point (of a Markov chain)      260.B
Recurrent point (of a Markov process)      261.B
Recurrent positive (ergodic class)      260.B
Recurrent positive (point)      260.B
Recurrent regionally (flow)      126.E
Recurrent sequence of order r      295.A
Recurrent set      260.E
Recurrent set chain      126.E
Recurrent strongly (measurable transformation)      136.C
Recursive function(s)      356
Recursive function(s) general      356.C 356.F
Recursive function(s) partial      356.E 356.F
Recursive function(s) primitive      356.A 356.B 356.F
Recursive function(s) uniformly primitive      356.B
Recursive predicate general      356.C
Recursive predicate primitive      356.B
Recursive set      97 356.D
Recursive set general      97
Recursively (define a partial recursive function)      356.E
Recursively enumerable predicate      356.D
Recursively enumerable set      356.D
Recursively uniformly in $\Psi$      356.E
Reduced (a closed linear subspace)      251.L
Reduced (latin square)      241.A
Reduced (scheme)      16.D
Reduced Abelian group      2.D
Reduced algebra      231.B
Reduced basis (of a lattice)      92.C
Reduced bundle (of a principal G-bundle)      147.J
Reduced character (of an algebra)      362.E
Reduced Clifford group      61.D
Reduced cone (of a topological space)      202.F
Reduced dual      437.L
Reduced extremal distance      143.B
Reduced form (of a linear structural equation system)      128.C
Reduced homology exact sequence      201.F
Reduced homology group      201.E
Reduced join (of homotopy classes)      202.Q
Reduced join (of mappings)      202.F
Reduced join (of topological spaces)      202.F
Reduced link polynomial      235.D
Reduced mapping cone      202.F
Reduced norm (of an algebra)      362.E
Reduced orthogonal group      61.D
Reduced product space      202.Q
Reduced quadratic form      348.I
Reduced representation (of an algebra)      362.E
Reduced residue system modulo m      291.G
Reduced square operation, Steenrod      64.B
Reduced square, Steenrod      64.B
Reduced suspension (of a topological space)      202.F
Reduced suspension n-fold      202.F
Reduced trace (of an algebra)      362.E
Reduced von Neumann algebra      308.C
Reducibility, axiom of      156.B 411.K
Reducible (algebraic equation)      10.B
Reducible (algebraic variety)      16. A
Reducible (continuous geometry)      85.A
Reducible (fiber bundle)      147.J
Reducible (germ of an analytic set)      23.B
Reducible (in four color problem)      157.D
Reducible (linear system in control theory)      86.C
Reducible (linear system)      16.N
Reducible (polynomial)      337.F
Reducible (positive matrix)      269.N
Reducible (representation)      362.C
Reducible (Riemannian manifold)      364.E
Reducible completely (A-module)      277.H
Reducible completely (group)      190.L
Reducible completely (representation)      362.C
Reductio ad absurdum      156.C 411.I
Reduction d’Alembert method of, of order      252.F
Reduction formula (of a surface)      110.A
Reduction good (of an Abelian variety)      3.N
Reduction modulo $\mathfrak{U}$ (of a representation)      277.L
Reduction modulo m (of a linear representation)      362.F
Reduction potential good (of an Abelian variety)      3.N
Reduction potential stable (of an Abelian variety)      3.N
Reduction stable (of a curve)      9.K
Reduction stable (of an Abelian variety)      3.N
Reduction theorem, cup product (on cohomology or homology of groups)      200.M
Reduction theory, Minkowski (on fundamental regions)      122.E
Reductive (algebraic group)      13.I
Reductive (homogeneous space)      199.A
Reductive (Lie algebra)      248.G
Reductive action      226.B
Reductive action defined by a rational representation      226.B
Reductive action geometrically      226.B
Reductive action linearly      226.B
Reductive action semi-      226.B
Reductive stabilizer      199.A
Ree group      151.I
Ree type, group of      151.J
Ree type, group of Janko —      151.J
Ree, Rim Hak      151.I 151.J App.B Table
Reeb component      154.B
Reeb foliation      154.B
Reeb stability theorems      154.D
Reeb, Georges(1920-)      90.r 154.A 154.B 154.D 279.D
Reed, George Michael(1945-)      273.K
Reed, L.J.      263.A
Reed, Michael(1942-)      331.r 375.r 390.r
Reed, Myril Baird(1902-)      282.r
Reeh — Schlieder theorem      150.E
Reeh, Helmut Rudolf(1932-)      150.E
Rees lemma, Artin —      284.A
Rees, David(1918-)      67.I 284.A
Reference edge      281.C
Refinement $\Delta$-(of a covering)      425.R
Refinement (of a covering)      425.R
Refinement (of a descending chain in a lattice)      243.F
Refinement (of a normal chain in a group)      190.G
Refinement barycentric      425.R
Refinement cushioned      425.X
Refinement star (of a covering)      425.R
Reflected wave      325.L
Reflecting barrier      115.B 115.C
Reflection (associated with $\Phi$)      13.R
Reflection (of a principal space)      139.B
Reflection coefficient      387.D
Reflection glide      92.E
Reflection points (with respect to a circle)      74.E
Reflection positivity      150.F
Reflection principle      45.E
Reflection Schwartz’s principle of      74.E 198.G
Reflection space      359
Reflection theorem of quasiconformal      352.C
Reflectionless potential      387.D
Reflexive (locally convex space)      424.O
Reflexive (relation)      358.A
Reflexive Banach space      37.G
Reflexive law (for an equivalence relation)      135.A
Reflexive law (on ordering)      311.A
Refraction, atmospheric      392
Regge behavior      386.C
Regge poles      132.C 386.C
Regge, Tullio(1931-)      132.C 146.A 146.C 375.r 386.C
Regime, local      51.B
Regiomontanus(Johann Miiller)(1436-1476)      360 432.C
Region      79.A
Region acceptance      400.A
Region confidence      399.Q
Region critical      400.A
Region Dirichlet      234.C
Region estimation      399.Q
Region feasible      264.B 292.A
Region Ford fundamental      234.C
Region fundamental (of a discrete transformation group)      122.B
Region invariance of a confidence      399.Q
Region of absolute stability (of the Runge — Kutta (P,p) method)      303.G
Region of discontinuity      234.A
Region of relative stability      303.G
Region star      339.D
Region tolerance      399.R
Region unbiased confidence      399.Q
Region uniformly most powerful      399.Q
Region uniformly most powerful unbiased      399.Q
Regionally recurrent (flow)      126.E
Regionally recurrent on an invariant set      126.E
Regression analysis      403.D
Regression coefficient      397.H 397.J 403.D
Regression function      397.I
Regression function linear      397.H 403.D
Regression hyperplane      403.D
Regression line      403.D
Regression, line of      111.F 111.I
Regula Falsi      301.C
Regular (almost contact manifold)      110.E
Regular (almost periodic system)      290.B
Regular (at a subvariety)      16.B
Regular (boundary point)      120.D
Regular (cell complex)      70.D
Regular (closed set)      125.J
Regular (coherent $\mathscr{E}$-module)      274.G
Regular (differential form on an algebraic variety)      16.O
Regular (Dirichlet form)      261.C
Regular (element of a connected Lie group)      249.P
Regular (element of a real Lie algebra)      248.B
Regular (estimator)      399.N
Regular (Green line)      193.J
Regular (kernel)      125.L
Regular (left ideal of a Banach algebra)      36.D
Regular (ordinal number)      312.E
Regular (permutation group)      151.H
Regular (point for an additive process)      5.G
Regular (point of a flow)      126.D
Regular (point of an analytic set)      23.B 45.D
Regular (point with respect to an analytic set)      21.M
Regular (point with respect to the Dirichlet problem)      207.B
Regular (prime number)      14.L
Regular (sampling procedure)      373.A
Regular (spectral sequence)      200.J
Regular (submartingale)      262.D
Regular affine transformation      7.E
Regular along a subvariety (for a rational mapping)      16.I
Regular at the point at infinity (for a harmonic function)      193.B
Regular Banach space      37.G
Regular boundary (of a diffusion process)      115.B
Regular boundary domain with (in a $C^\infty$ -manifold)      105.U
Regular chain (of integral elements)      428.E
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте