Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Vector field without source      442.D
Vector field without vortex      442.D
Vector field, integral of      App. A Table
Vector flux (through a surface)      442.D
Vector function, measurable      308.G
Vector group      422.E
Vector integral      443.A
Vector invariant      226.C
Vector lattice      310.B
Vector lattice $\sigma$-complete      310.C
Vector lattice Archimedean      310.C
Vector lattice complete      310.C
Vector lattice normed      310.F
Vector line (of a vector field)      442.D
Vector measure      443.G
Vector measure absolutely continuous      443.G
Vector measure bounded      443.G
Vector measure completely additive      443.G
Vector measure finitely additive      443.G
Vector potential      130.A 442.D
Vector product      442.C App. Table
Vector representation (of a Clifford group)      61.D
Vector space      442.A
Vector space metric      256.H
Vector space over a field      256.H
Vector space prehomogeneous      450.V
Vector space standard (of an affine space)      7.A
Vector space tangent      105.H
Vector space topological      424.A
Vector triple product      442.C App. Table
Vector tube      442.D
Vector(s) (in a Euclidean space)      442
Vector(s) (in a linear space)      256.A
Vector(s) analytic      437.S
Vector(s) characteristic (of a linear mapping)      269.L
Vector(s) characteristic (of a linear operator)      390.A
Vector(s) characteristic (of a matrix)      269.F
Vector(s) coherent      377.D
Vector(s) collinear      442.A
Vector(s) column      269.A
Vector(s) contravariant      256.J
Vector(s) coplanar      442.A
Vector(s) covariant      256.J
Vector(s) cyclic (of a representation space of a unitary representation)      437.A
Vector(s) effect      102.A
Vector(s) eigen- (of a linear mapping)      269.L
Vector(s) eigen- (of a matrix)      269.F
Vector(s) eigen-, generalized      390.B
Vector(s) error      102.A
Vector(s) fixed      442.A
Vector(s) four-      359.C
Vector(s) four-, energy-momentum      258.C
Vector(s) free      442.A
Vector(s) free vacuum      150.C
Vector(s) fundamental (in a vector space)      442.A
Vector(s) horizontal      80.C
Vector(s) independent      66.F
Vector(s) integral      428.E
Vector(s) mean      341.B
Vector(s) mean curvature      365.D
Vector(s) normal      105.L 111.H 364.A
Vector(s) normalized      409.G
Vector(s) observation      102.A
Vector(s) orthogonal      139.G
Vector(s) p-      256.O
Vector(s) p-, bundle of      147.F
Vector(s) positive      7.A 442.A
Vector(s) Poynting      130.A
Vector(s) proper (of a linear mapping)      269.L
Vector(s) proper (of a linear operator)      390.A
Vector(s) proper (of a matrix)      269.F
Vector(s) root      390.B
Vector(s) row      269.A
Vector(s) tangent      105.H
Vector(s) tangent, holomorphic      72.A
Vector(s) tangent, of type (0,1)      72.C
Vector(s) tangent, of type (1,0)      72.C
Vector(s) unit      442.B
Vector(s) unit (of an affine frame)      7.C
Vector(s) vacuum      377. A
Vector(s) valuation      6.C
Vector(s) valuation, ring of      6.C
Vector(s) vector(s) eigen- (of a linear operator)      390.A
Vector(s) vertical      80.B
Vector(s) wave number (of a sine wave)      446
Vector(s) Witt      449
Vector(s) Witt, of length n      449.B
Vector(s) zero      442.A
Vector-valued integral      443
Vectorial form, canonical      417.C
Vectorial p-form      417.C
Vedesinov, N.      425.Q
Veech, William Austin(1938-)      136.H
Vekua, Il’ya Nestorovich(1907-1977)      217.J 323.r
Veldkamp, Ferdinando D.      13.R
Velo, Giorgio      150.r
Velocity group      446
Velocity phase (of a sine wave)      446
Velocity phase space      126.L
Velocity potential      205.B
Veneziano model      132.C 386.C
Veneziano, Gabriele(1942-)      132.C 386.C
Venkov, Boris Borisovich(1934-)      200.M
Venttsel’, Aleksandr Dmitrievich(1937-)      115.C 261.r 406.F
Ver Eecke, Paul(1867-1959)      187.r
Verbeure inequality, Roepstorff — Fannes —      402.G
Verbeure, Andre(1940-)      402.G
Verbiest, Ferdinand(1623-1688)      57.C
Verdier, Jean-Louis(1935-)      16.r 450.Q 450.r
Vergne, Michele      384.r
Verhulst, Pierre Francois(1804-1849)      263.A
Verner, James Hamilton(1940-)      303.r
Veronese surface      275.F
Veronese, Giuseppe(1854-1917)      275.F
Versal (unfolding)      51.D
Vershik, Anatolil Moiseevich(1933-)      136.D 136.r 183.r
Version (of a stochastic process)      407.A
Vertex (in a cell complex)      70.D
Vertex (in a Euclidean (simplicial) complex)      70.B
Vertex (in a simplicial complex)      70.C
Vertex (in the polyhedron of a simplicial complex)      70.C
Vertex (of a circular cone)      78.A
Vertex (of a complete quadrangle)      343.C
Vertex (of a convex cell in an affine space)      7.D
Vertex (of a convex polyhedron)      89.A
Vertex (of a geodesic triangle)      178.A
Vertex (of a graph)      186.B
Vertex (of a linear graph)      282.A
Vertex (of a parabola)      78.C
Vertex (of a polygon)      155.F
Vertex (of a simplex in an affine space)      7.D
Vertex (of a spherical triangle)      432.B
Vertex (of a star region)      339.D
Vertex (vertices) (of an angle)      139.D 155.B
Vertex adjacent      186.B
Vertex end      186.B
Vertex initial      186.B
Vertex isolated      186.B
Vertex terminal      186.B
Vertical angles      139.D
Vertical component (of a vector field)      80.C
Vertical slit mapping, extremal      367.G
Vertical vector      80.B
Very ample (divisor)      16.N
Very ample (linear system)      16.N
Very ample (sheaf)      16.E
Very weak Bernoulli process      136.E
Vesentini, Edoarc (1928-)      122.F
Vessiot extension field, Picard —      113
Vessiot theory, Picard —      113
Vessiot, Ernest(1965-1952)      107.A 113 249.V
Vey classes, Godbillon —      154.G
Vey, Jacques      154.G 154.r 384.r
Vibrating membrane, equation of a      325.A
Vibrating string, equation of a      325.A
Vibration      318
Vibration normal      318.B
Vibration parametrically sustained      318.B
Vibration self-excited      318.B
Vick, James Whiyfield(1942-)      201.r
Viehweg, Eckart      72.I 72.r 232.D 232.r
Viete, F.      444
Viete, Francois      8 20 332 360 444
Vietoris axiom      425.Q
Vietoris exact sequence, Mayer- (for a proper triple)      201.C
Vietoris, Leopold(1891—)      201.A 201.C 201.E 201.L 425.Q
Vigneras, Marie-France(1946-)      391.C
Vigue, Jean-Pierre(1948-)      384.r
Vilenkin, Naum Yakovlevich(1920-)      112.r 125.r 162.r 218.r 341.r 389.r 395.r 407.C 437.AA
Villat integration formula      App. A Table
Villat, Henri Rene Pierre(1879-1972)      App.A Table
Ville, Jean A.      262.A
Vinberg, Ernest Borisovich(1937-)      122.G 351.I 384.C 384.r
Vinogradov mean value theorem      4.E
Vinogradov, Ivan M.(1891-1983)      4.C 4.E 123.B 123.E 242.M 295.E
Vinter, Richard B.      127.G
Virtanen, Kaarlo I.      62.C 352.A 352.C 367.E 367.I
Virtual arithmetic genus (of a divisor)      16.E
viscosity      205.B
Viscosity coefficient of bulk      205.C
Viscosity coefficient of shear      205.C
Viscosity magnetic      259
Viscosity, coefficient of      205.C
Vishik, Mark Iosifovich(1921-)      112.E 323.N
Visibility manifold      178.F
Vitali covering theorem      380.D
Vitali, Giuseppe(1875-1932)      270.G 380.D
Viterbi, Andrew J.(1935-)      213.E
Vitt, Aleksandr Adol’fovich      290.r
Vitushkin, Anatolii Georgievich(1931—)      164.J 169.E
Vivanti theorem      339.A
Vivanti, Giulio(1859-?)      217.r 339.A
Vladimirova, S.M.      365.J
Vogan, David Alexander, Jr.(1954-)      437.r
Vogel, Kurt(1888-1985)      24.r
Vogel, William R.      200.r
Vogt, Dietmar(1941-)      168.B
Voichick, Michael(1934-)      164.K
Voiculescu, Dan Virgil(1949-)      36.J 331.E
Voider, J.E.      142.C
Voigt, Juergen(1943-)      331.E
Volk, Isai Mikhallovich      289.E
Volkov, Yurii Aleksandrovich(1930-)      365.J
Volkovyskil, L.      198.r
Volterra integral equation      217.A
Volterra operator      68.J
Volterra theorem, Poincare —      198.J
Volterra type, integral equation of      217.A
Volterra type, integrodifferential equation of      22 2.A
Volterra, Vito(1860-1940)      20 68.J 162 163.B 198.J 217.A 222.A 263.B
Voltyanskii, V.G.      155.r
Volume (of a lattice in a Euclidean space)      92.D
Volume (of a polyhedron)      139.F
Volume (of a simplex in an affine space)      7.E
Volume (of an idele)      6.D
Volume element (of an oriented $C^\infty$-manifold)      105.W
Volume element associated with a Riemannian metric      105.W
Volume element integral of a function with respect to a (on a $C^\infty$-manifold)      105.W
Volume inner      270.G
Volume outer      270.G
von Eoetvoes, Roland(1848-1919)      359.D
von Karman transonic similarity      205.D
von Karman, Theodore(1881-1963)      205.E 433.C
von Koch, Helge(1870-1924)      246.K 450.I
von Mises theorem      399.K
von Mises, Richard(1883-1953)      298.r 342.A 354.E 399.K 399.r
von Neumann algebra      308.C
von Neumann algebra discrete      308.E
von Neumann algebra finite      308.E
von Neumann algebra induced      308.C
von Neumann algebra of type $\textrm{II}_1$      308.E
von Neumann algebra of type $\textrm{II}_\infty$      308.E
von Neumann algebra of type I      308.E
von Neumann algebra of type II      308.E
von Neumann algebra of type III      308.E
von Neumann algebra purely infinite      308.E
von Neumann algebra reduced      308.C
von Neumann algebra semifinite      308.E
von Neumann algebra structure theorem for, of type III      308.I
von Neumann condition      304.F
von Neumann density theorem      308.C
von Neumann inequality      251.M
von Neumann reduction theory      308.G
von Neumann selection theorem      22.F
von Neumann theorem, Weyl —      390.I
von Neumann uniqueness theorem      351.C
von Neumann — Halmos theorem      136.E
von Neumann — Morgenstern solution      173.D
von Neumann, J.      445
von Neumann, John(Johann)(1903-1957)      18.A 18.E 18.r 20 22.F 33.A—C 33.r 36.G 68.I 69.B 69.C 75.B 85.A 95 136.A 136.B 136.E 136.F 138.r 156.E 156.r 162 173.A 173.C 173.D 173.r 197.A 197.r 225.r 251.M 255.E 304.F 308.C 308.F 308.G 308.I 308.r 312.A 331.E 351.C 351.L 351.r 354.B 376 385.C 390.I 445
Vopenka, Petr(1935-)      33.r
Voronoi, Georgii Fedoseevich(1868-1908)      242.A
Vortex line      205.B
Vortex, vector field without      442.D
Vorticity      205.B
Vorticity theorem, Helmholtz      205.B
Voss, Heinz-Jurgen      186.r
Vossen theorem, Cohn —      111.I
Vranceanu, Gheorghe(1900-1979)      434.C
VSVO algorithm      303.E
Vulikh, Boris Zakharovich(1913-1978)      310.A
W-construction (of an Eilenberg — MacLane complex)      70.F
w-plane      74. D
w-point (of an entire function)      429.B
w-sphere      74.D
W-surface      111.I
W.B. process      136.E
Wada, Junzo(1927-)      164.C
Wada, Yasusi(Nei)(1787-1840)      230
Waelbroeck, Lucien(1929-)      36.M
Wage, M.L.      117.E
Wagner function      39.F
Wagner, Harvey Maurice(1931-)      307.r 408.r
Wagner, Herbert      39.F
Wagner, S.W.      95.r
Wagschal, Claude      321.G
Wagstaff, Samuel S.      14.L 145
Wahl, Jonathan Michael(1945-)      9.r
Wahlin, G.E.      145.r
Wait, R.      223.r 301.r 304.r
Waiting time      260.H
Waiting time distribution      307.C
Wakakuwa, Hidekiyo(1925-)      364.F
Wald theorem      399.H
Wald, Abraham(1902-50)      376 398.A 399.H 399.M 399.r 400.r 401.F 401.r 421.r
Waldhausen, Friedhelm(1938-)      65.E 235.B
Waldschmidt, Michel(1946-)      430.D 430.r
Wales, David B.(1939-)      151.I App.B Table
Walfisz(Val’fis), Arnold Z.(1892-1962)      4.D 123.D 220.B 242.r 295.D
Walker equation, Yule —      421.D
Walker metrics, Robertson —      359.E
Walker, Arthur G.      359.E
Walker, G.      421.D
Walker, M.R.      376.r
Walker, R.C.      425.r
Walker, Robert John(1909-)      9.r 15.B
Wall adiabatic      419.A
Wall diathermal      419.A
Wall group      114.J
Wall, Charles Terens Clegg(1936-)      114.B 114.F 114.H 114.J 114.K 114.r
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте