Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Field equation      150.B
Field equation exterior      339.D
Field equation interior      339.D
Field theory      150
Field theory constructive      150.F
Field theory Euclidean      150.F
Field theory Markov      150.F
Field theory nonsymmetric unified      434.C
Field theory quantum      150.C
Field theory unified      434
Field theory unitary      434.C
Field(s)      149
Field(s) $C_i$-      118.F
Field(s) $C_i(d)$-      118.F
Field(s) (of sets)      270.B
Field(s) (of stationary curves)      46.C
Field(s) absolute class      59.A
Field(s) algebraic function, in n variables      149.I
Field(s) algebraic number      14.B
Field(s) algebraically closed      149.I
Field(s) alternative      231.A
Field(s) Anosov vector      126.J
Field(s) Archimedean ordered      149.I
Field(s) asymptotic      150.D
Field(s) Axiom A vector      126.J
Field(s) basic (of a linear space)      256.A
Field(s) Borel      270.B 270.C
Field(s) canonical      377.C
Field(s) class      59.B
Field(s) coefficient (of a projective space)      343.C
Field(s) coefficient (of a semilocal ring)      284.D
Field(s) coefficient (of an affine space)      7.A
Field(s) coefficient (of an algebra)      29.A
Field(s) commutative      368.B
Field(s) composite      149.D
Field(s) conjugate      149.J 377.C
Field(s) cyclotomic      14.L
Field(s) decomposition (of a prime ideal)      14.K
Field(s) differential      113
Field(s) electric      130.B
Field(s) Euclidean      150.F
Field(s) extension      149.B
Field(s) finite      149.C
Field(s) formal power series, in one variable      370.A
Field(s) formally real      149.N
Field(s) free      150. A
Field(s) free Dirac      377.C
Field(s) free scalar      377.C
Field(s) function      16.A
Field(s) Galois      149.M
Field(s) Galois theory of differential      113
Field(s) ground (of a linear space)      256.A
Field(s) ground (of an algebra)      29.A
Field(s) Hamiltonian vector      126.L 219.C
Field(s) holomorphic vector      72.A
Field(s) imaginary quadratic      347.A
Field(s) imperfect      149.H
Field(s) inertia (of a prime ideal)      14.K
Field(s) intermediate      149.D
Field(s) invariant      172.B
Field(s) Jacobi      178.A
Field(s) Lagrangian vector      126.L
Field(s) linearly disjoint      149.K
Field(s) local      257.A
Field(s) local class      257.A
Field(s) local class, theory      59.G
Field(s) magnetic      130.B
Field(s) Morse — Smale vector      126.J
Field(s) noncommutative      149.A
Field(s) number      149.C
Field(s) of definition (for an algebraic variety)      16.A
Field(s) of formal power series in one variable      370.A
Field(s) of moduli      73.B
Field(s) of quotients      67.G
Field(s) of rational expressions      337.H
Field(s) of rational functions      337.H
Field(s) of scalars (of a linear space)      256.A
Field(s) ordered      149.N
Field(s) p-adic number      257.A 439.F
Field(s) perfect      149.H
Field(s) Picard — Vessiot extension      113
Field(s) power series, in one variable      370.A
Field(s) prime      149.B
Field(s) Pythagorean      139.B 155.C
Field(s) Pythagorean ordered      60.O
Field(s) quadratic      347.A
Field(s) quasi-algebraically closed      118.F
Field(s) ramification (of a prime ideal)      14.K
Field(s) random      407.B
Field(s) rational function, in n variables      149.K
Field(s) real      149.N
Field(s) real closed      149.N
Field(s) real quadratic      347.A
Field(s) relative algebraic number      14.I
Field(s) residue class      149.C 368.F
Field(s) residue class (of a valuation)      439.B
Field(s) scalar      108.O
Field(s) scalar (in a 3-dimensional Euclidean space)      442.D
Field(s) skew      149.A 368.B
Field(s) splitting (for an algebra)      362.F
Field(s) splitting (for an algebraic torus)      13.D
Field(s) splitting (of a polynomial)      149.G
Field(s) strongly normal extension      113
Field(s) tension      195.B
Field(s) topological      423.P
Field(s) totally imaginary      14.F
Field(s) totally real      14.F
Field(s) transversal      136.G
Field(s) vector (in a 3-dimensional Euclidean space)      442.D
Field(s) vector (in a differentiable manifold)      108.M
Field(s) Wightman      150.D
Field(s) Yang — Mills      150.G
Fienberg, Stephen Elliott(1942-)      280.r
Fierz, Markus Edoward(1912-)      150.A
Fife, Paul C      95.r 263.D
Fifth postulate (in Euclidean geometry)      139.A
Fifth problem of Hilbert      423.N
Figiel, Tadeusz      68.K 68.M
Figueira, Mario Sequeira Rodrigues      286.Y
Figure(s)      137
Figure(s) $P^r$-      343.B
Figure(s) absolute (in the Erlangen program)      137
Figure(s) central      420.B
Figure(s) equilibrium      55.D
Figure(s) fundamental (in a projective space)      343.B
Figure(s) linear fundamental      343.B
FILE      96.B
Filing, inverted, scheme      96.F
Filippov, Aleksei Fedorovich(1923-)      22.r
Fill-in      302.E
Fillmore, Peter Arthur(1936-)      36.J 390.J 390r
Filter      87.I
Filter base      87.I
Filter Cauchy (on a uniform space)      436.G
Filter Kalman      86.E
Filter Kalman — Bucy      86.E 405.G
Filter linear      405.F
Filter maximal      87.I
Filter nonlinear      405.F 405.H
Filter Wiener      86.E
Filtering      395.E
Filtering stochastic      342.A 405.F
Filtration      200.J
Filtration bounded from below      200.J
Filtration degree      200.J
Filtration discrete      200J
Filtration exhaustive      200.J
Final object      52.D
Final set (of a correspondence)      358.B
Final set (of a linear operator)      251.E
Final state      31.B
Fine moduli scheme      16.W
Fine topology (on a class of measures)      261.D 338.E
Finely continuous      261.C
Finely open (set)      261.D
Finer relation      135.C
Finer topology      425.H
Finitary standpoints      156.D
Finite (cell complex)      70.D
Finite (measure)      270.D
Finite (morphism)      16.D
Finite (of a curve of class $C^k$)      93.G
Finite (potency)      49.A
Finite (simplicial complex)      70.C
Finite (triangulation)      70.C
Finite (von Neumann algebra)      308.E
Finite approximately      36.H 308.I
Finite automaton      31.D
Finite basis (for an ideal)      67.B
Finite branch (of a curve of class $C^k$)      93.G
Finite character, condition of      34.C
Finite cochain (of a locally finite simplicial complex)      201.P
Finite continued fraction      83.A
Finite covering (of a set)      425.R
Finite differences      223.C
Finite element method      233.G 290.E 304.C
Finite extension      149.F
Finite field      149.C
Finite field $F_q$      149.M
Finite geometrically      234.C
Finite groups      151.A 190.C
Finite hyper-      308.I
Finite intersection property      425.S
Finite interval (in $\mathbf{R}$)      355.C
Finite length      277.I
Finite memory channel      213.F
Finite order (distribution)      125.J
Finite ordinal number      312.B
Finite part (of an integral)      125.C
Finite point- (covering)      425.R
Finite population      373.A
Finite presentation      16.E
Finite prime divisor      439.H
Finite pro-, group      210.C
Finite projective plane      241.B
Finite rank (bounded linear operator)      68.C
Finite semi-      308.I
Finite sequence      165.D
Finite series      379.A App. Table
Finite set      49.A 381.A
Finite set hereditary      33.B
Finite star- (covering)      425.R
Finite subset property      396.F
Finite sum, orthogonality for a      19.G 317.D App. Table
Finite type ($\mathscr{O}$-module)      16.E
Finite type (graded module)      203.B
Finite type (module)      277.D
Finite type (morphism of schemes)      16.D
Finite type locally of      16.D
Finite type, algebraic space of      16.W
Finite type, subshift of      126.J
Finite-band potentials      387.E
Finite-dimensional distribution      407.A
Finite-dimensional linear space      256.C
Finite-dimensional projective geometry      343.B
Finite-displacement theory      271.G
Finite-gap potentials      387.E
Finite-type power series space      168.B
Finite-valued function      443.B
Finitely additive (vector measure)      443.G
Finitely additive class      270.B
Finitely additive measure      270.D
Finitely additive set function      380.B
Finitely determined process      136.E
Finitely distinguishable (hypothesis)      400.K
Finitely equivalent sets (under a nonsingular bimeasurable transformation)      136.C
Finitely fixed      136.F
Finitely generated (A-module)      277.D
Finitely generated (group)      190.C
Finitely presented (group)      161 .A
Finiteness condition for integral extensions      284.F
Finiteness theorem      16.AA
Finiteness theorem Ahlfors      234.D
Finitistic (topological space)      431.B
Finn, Robert(1922-)      204.D 204.r 275.A 275.D
Finney, David John(1917-)      40.r
Finney, Ross L.      201.r
Finsler manifold      286.L
Finsler metric      152.A
Finsler space      152
Finsler, Paul(1894-1970)      109 152.A 286.L
Firmware      75.C
First axiom, Tietze      425.Q
First boundary value problem      193.F 323.C
First category, set of      425.N
First classification theorem (in theory of obstructions)      305.B
First complementary law of the Legendre symbol      297.I
First countability axiom      425.P
First definition (of algebraic K-group)      237.J
First extension theorem (in the theory of obstructions)      305.B
First factor (of a class number)      14.L
First fundamental form (of a hypersurface)      111.G
First fundamental quantities (of a surface)      111.H
First fundamental theorem (Morse theory)      279.D
First homotopy theorem (in the theory of obstructions)      305.B
First incompleteness theorem      185.C
First integral (of a completely integrable system)      428.D
First isomorphism theorem (on topological groups)      423.J
First kind Abelian integral of      11.C
First kind differential form of      16.O
First kind(integral equations of Fredholm type of the)      217.A
First kind, Abelian differential of      11.C
First law of cosines      432.A App. Table
First law of thermodynamics      419.A
First maximum principle (in potential theory)      338.C
First mean value theorem (for the Riemann integral)      216.B
First negative prolongational limit set      126.D
First positive prolongational limit set      126.D
First problem, Cousin      21.K
First prolongation (of P)      191 .E
First quadrant (of a spectral sequence)      200.J
First quartile      396.C
First regular integral      126.H
First separation axiom      425.Q
First variation      46.B
First variation formula      178.A
First-in first-out memory      96.E
First-in last-out memory      96.E
First-order asymptotic efficient estimator      399.O
First-order derivatives      106.A
First-order designs      102.M
First-order efficient estimator      399.O
First-order predicate      411.K
First-order predicate logic      411.K
First-return mapping (map)      126.B
Fischer, Arthur Elliot      364.H
Fischer, Bernd(1936-)      151.I 151.J
Fischer, Ernst(1875-1956)      168.B 317.A
Fischer, Gerd      23.r
Fischer—Colbrie, Doris Helga(1949-)      275.F
Fisher consistent      399.K
Fisher expansions, Cornish —      374.F
Fisher inequality      102.E
Fisher information      399.D
Fisher information matrix      399.D
Fisher problem, Behrens —      400.G
Fisher theorem      43.G
Fisher theorem, Riesz —      168.B 317.A
Fisher three principles      102.A
Fisher z-transformation      374.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте