Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Distribution(s) one-side stable for exponent 1/2      App. A Table
Distribution(s) operator-valued      150.D
Distribution(s) p-dimensional noncentral Wishart      374.C
Distribution(s) Pearson      397.D
Distribution(s) pluriharmonic      21.C
Distribution(s) Poisson      341.D 397.F App. Table
Distribution(s) polynomial      App. A Table
Distribution(s) population      396.B 401.F
Distribution(s) positive      125.C
Distribution(s) posterior      401.B 403.G
Distribution(s) predictive      403.G
Distribution(s) prior      401.B 403.G
Distribution(s) probability      342.B App. Table
Distribution(s) probability, of a random variable      342.C
Distribution(s) purely discontinuous      341.D
Distribution(s) quasistable      341.G
Distribution(s) random      395.H 407.C
Distribution(s) random, in the wider sense      395.C 407.C
Distribution(s) random, with independent values it every point      407.C
Distribution(s) rapidly decreasing      125.O
Distribution(s) rectangular      App. A Table
Distribution(s) sampling      374.A
Distribution(s) semistable      341.G
Distribution(s) simple, potential of      338.A
Distribution(s) simultaneous      342.C
Distribution(s) slowly increasing      125.N
Distribution(s) stable      341.G
Distribution(s) standard Gaussian      176.A
Distribution(s) standard normal      341.D
Distribution(s) strictly stationary random      395.H
Distribution(s) strongly stationary random      395.H
Distribution(s) substituted      125.Q
Distribution(s) t-      341.D 374.B App. Table
Distribution(s) tempered      125.N
Distribution(s) two-sided exponential      App. A Table
Distribution(s) ultra-, of class ${M_p}$ or $(M_p)$      125.U 125.BB
Distribution(s) uniform      341.D App. Table
Distribution(s) unit      341.D
Distribution(s) value      124.A
Distribution(s) waiting time      307.C
Distribution(s) weakly stationary random      395.C
Distribution(s) Wishart      374.C
Distribution(s) z-      341.D 374.B App. Table
Distribution(s), entropy of a      403.B
Distribution(s), exponential family of      396.G
Distribution-free (test)      371.A
Distribution-free method      371.A
Distributive algebra      231.A
Distributive lattice      243.E
Distributive law (in a lattice)      243.E
Distributive law (in a ring)      368.A
Distributive law (in algebra of sets)      381.B
Distributive law (on cardinal numbers)      49.C
Distributive law (on natural numbers)      294.B
Distributive law complete (in a lattice-ordered group)      243.G
Disturbance      128.C
Diurnal aberration      392
Div (divergence)      442.D
diverge      87.B 87.E 379.A
Diverge to $\infty$      87.D
Divergence (of a differentiable vector field)      442.D
Divergence (of a vector field with respect to a Riemannian metric)      105.W
Divergence (of a vector field with respect to a volume element)      105.W
Divergence form      323.D
Divergence infrared      146.B
Divergence theorem      94.D
Divergence ultraviolet      146.B
Divergent (double series)      379.E
Divergent (infinite product)      379.G
Divergent (integral)      216.E
Divergent (sequence of real numbers)      87.B
Divergent (series)      379.A
Divergent properly      379.A
Divide (a bounded domain)      384.F
Divided difference      223.D
Dividing cycle (on an open Riemann surface)      367.I
Divisibility relation (in a ring)      67.H
Divisible (Abelian p-group)      2.D
Divisible (additive group)      2.E
Divisible (element of ring)      67.H 277.D
Divisible (fractional ideal)      14.E
Divisible (general Siegel domain)      384.F
Divisible (number)      297.A
Divisible A-module      277.D
Divisible subgroup (of a discrete Abelian group)      422.G
Division (of a pseudomanifold)      65.A
Division algebra      29.A
Division algorithm of natural numbers      297.A
Division algorithm of polynomials      337.C
Division algorithm Weierstrass type (for microdifferential operators)      274.E
Division ring      368.B
Division simplicial      65.A
Division theorem Spath type (for microdifferential operators)      274.E
Divisor $\mathfrak{D}$-linearly equivalent (on an algebraic curve)      9.F
Divisor (in a closed Riemann surface)      11.D
Divisor (in a complex manifold)      72.F
Divisor (in an algebraic curve)      9.C
Divisor (in an algebraic variety)      16.M
Divisor (of a fractional ideal)      14.E
Divisor (of a number)      297.A
Divisor (of an algebraic function field of dimension 1)      9.D
Divisor (of an algebraic number field)      14.F
Divisor (of an element of a ring)      67.H
Divisor ample      16.N
Divisor branch (in a covering)      9.I
Divisor canonical (of a Jacobian variety)      9.E
Divisor canonical (of a Riemann surface)      11.D
Divisor canonical (of an algebraic curve)      9.C
Divisor canonical (of an algebraic variety)      16.O
Divisor Cartier      16.M
Divisor class (on a Riemann surface)      11.D
Divisor class canonical      11.D
Divisor class differential      11.D
Divisor class group (of a Riemann surface)      11.D
Divisor common (of elements of a ring)      67.H
Divisor complex line bundle determined by      72.F
Divisor differential (of an algebraic curve)      9.C
Divisor effective (on a variety)      16.M
Divisor effective (on an algebraic curve)      9.C
Divisor elementary (of a matrix)      269.E
Divisor embedded prime (of an ideal)      67.F
Divisor finite prime      439.H
Divisor function      295.C
Divisor function generalized      295.C
Divisor greatest common      297.A
Divisor greatest common (of an element of a ring)      67.H
Divisor group (of a compact complex manifold)      72.F
Divisor imaginary infinite prime      439.H
Divisor infinite prime      439.H
Divisor integral (of an algebraic curve)      9.C
Divisor integral (of an algebraic number field)      14.F
Divisor integral (on a Riemann surface)      11.D
Divisor isolated prime (of an ideal)      67.F
Divisor k-rational (on an algebraic curve)      9.C
Divisor linearly equivalent (of a complex manifold)      72.F
Divisor maximal prime (of an ideal)      67.F
Divisor minimal prime (of an ideal)      67.F
Divisor nondegenerate      16.N
Divisor nondegenerate (on an Abelian variety)      3.D
Divisor numerically connected      232.D
Divisor of a differential form (on an algebraic variety)      16.O
Divisor of a function (on an algebraic curve)      9.C
Divisor of a function (on an algebraic variety)      16.M
Divisor pole (of a function on an algebraic variety)      16.M
Divisor positive (of an algebraic curve)      9.C
Divisor positive (on a Riemann surface)      11.D
Divisor prime (of an algebraic function field of dimension 1)      9.D
Divisor prime (of an algebraic number field or an algebraic function field of one variable)      439.H
Divisor prime (of an ideal)      67.F
Divisor prime (on a Riemann surface)      11.D
Divisor prime rational, over a field (on an algebraic curve)      9.C
Divisor principal (on a Riemann surface)      11.D
Divisor principal (on an algebraic curve)      9.C
Divisor problem, Dirichlet      242.A
Divisor real infinite prime      439.H
Divisor real prime      439.H
Divisor sheaf of ideals of (of a complex manifold)      72.F
Divisor special      9.C
Divisor very ample      16.N
Divisor zero (of a function on an algebraic variety)      16.M
Divisor zero (of a ring)      368.B
Divisor zero, with respect to M/P      284.A
Divisor, complete linear system defined by      16.N
Dixmier theorem, Rellich —      351.C
Dixmier, Jacques(1924-)      18.I 36.r 68.I 308.F 308.r 351.C 437.r
Dixon — Ferrar formula      App. A Table
Dixon, A.C.(1865-1936)      App.A Table
DK method      301.F
DKA method      301.F
DLR equation      402.G
Dmitriev, N.A.      44.r
DN      App. A Table
do Carmo, Manfrcdo Perdigao      111.r 275.A 275.B 365.G 365.r
Dobrushin, Roland L’vovich(1929-)      250.r 340.B 340.r 402.G 407.B
dodecahedron      357.B
Doerge, Karl(1898-1975)      337.F
Doetsch three-line theorem      43.E
Doetsch, Gustav(1892-1977)      43.E 208.r 240.r 379.M
Doi, Koji(1934-)      450.L
Doig, Alison G.      215.D
Dolansky, Ladislav      NTR
Dolbeault cohomology group      72.D
Dolbeault complex      72.D
Dolbeault lemma      72.D
Dolbeault theorem      72.D
Dolbeault, Pierre(1924-)      72.D
Dolbeault—Lemoine, Simone      365.E
Dold, Albrecht E.(1928)      70.F 70.r 201.r
Dolgachev, Igor V.      App.A Table
Dollard, John Day(1937-)      375.B
Domain kernel (of a sequence of domains)      333.C
Domain(s) (in a topological space)      79.A
Domain(s) (of a correspondence)      358.B
Domain(s) (of a mapping)      37.C 381.C
Domain(s) (of a variable)      165.C
Domain(s) angular      333.A
Domain(s) annular      333.A
Domain(s) Cartan pseudoconvex      21.I
Domain(s) circular      333.A
Domain(s) closed plane      333.A
Domain(s) complete Reinhardt      21.B
Domain(s) convergence (of a power series)      21.B
Domain(s) Courant — Cheng, theorem      391.H
Domain(s) d-pseudoconvex      21.G
Domain(s) Dirichlet      120.A
Domain(s) divisible bounded      284.F
Domain(s) effective      88.D
Domain(s) fundamental      234.C
Domain(s) generated Siegel      384.F
Domain(s) holomorphically complete      21.F
Domain(s) holomorphically convex      21.H
Domain(s) homogeneous bounded      384.A 412.F
Domain(s) individual      411.H
Domain(s) integral      368.B
Domain(s) irreducible symmetric bounded      412.F
Domain(s) Jordan      333.A
Domain(s) Levi pseudoconvex      21.I
Domain(s) locally Cartan pseudoconvex      21.I
Domain(s) locally Levi pseudoconvex      21.I
Domain(s) nodal      391.H
Domain(s) Noetherian      284.A
Domain(s) Noetherian integral      284.A
Domain(s) object      411.G
Domain(s) of a local homomorphism      423.O
Domain(s) of attraction      374.G
Domain(s) of class $C^{1,\lambda}$      323.F
Domain(s) of dependence      325.B
Domain(s) of holomorphy      21.F
Domain(s) of influence      325.B
Domain(s) of integration      216.F
Domain(s) of operator      409.A
Domain(s) operator (of a group)      190.E
Domain(s) plane      333
Domain(s) principal ideal      67.K
Domain(s) pseudoconvex      21.G
Domain(s) Reinhardt      21.B
Domain(s) Siegel      384.A
Domain(s) Siegel, generalized      384.F
Domain(s) Siegel, irreducible      384.E
Domain(s) Siegel, of the first kind      384.A
Domain(s) Siegel, of the second kind      384.A
Domain(s) Siegel, of the third kind      384.A
Domain(s) slit      333.A
Domain(s) strongly pseudoconvex      21.G
Domain(s) sweepable bounded      284.F
Domain(s) symmetric bounded      412.F
Domain(s) unique factorization      40.H
Domain(s) universal      16. A
Domain(s) Weil      21.G
Domain(s) with regular boundary (in a $C^\infty$-manifold)      105.U
Domain(s) with smooth boundary (in a $C^\infty$-manifold)      105.U
Domain(s), Brouwer theorem on the invariance of      117.D
Domain(s), spectrum of      391.A
Domb, Cyril      361.r 402.r
Dominant (of a sequence of functions)      435.A
Dominant integral form (on a Cartan subalgebra)      248.W
Dominate (an imputation of a game)      173.D
Dominated (by a family of topological spaces)      425.M
Dominated (statistical structures)      396.F
Dominated ergodic theorem      136.B
Dominated weakly (statistical structure)      396.F
Dominating set      186.I
Domination principle      338.L
Domination principle inverse      338.L
Domination, number of      186.I
Donaldson, Simon K.      114.K 114.r
Donford — Schwartz integral, Bartle —      443.G
Dongarra, Jack J.(1950-)      298.r
Donin, Iosif Failovich(1945-)      72.G
Donnelly, Harold Gerard(1951-)      391.N
Donoghue, William F., Jr.      212
Donsker invariance principle      250.E
Donsker, Monroe David(1924-)      250.E 340.r
Doob — Meyer decomposition theorem      262.D
Doob, Joseph Leo(1910—)      5.r 45.r 62.E 86.E 115.r 136.B 162 193.T 207.C 250.r 260.J 261.A 261.F 261.r 262.A 262.B 262.D 341.r 342.r 395.r 406.A 407.A 407.r
Doolittle method      302.B
Doolittle, M.H.      302.B
Doplichcr, Sergio(1940-)      150.E
Dorfmeister, Josef F.(1946-)      384.r
Dorn, William Schroeder(1928-)      349.r
Dornhoff, Larry      362.r
Dotted indices      258.B
Dotted spinor of rank k      258.B
Douady space      23.G
Douady, Adrien(1935-)      23.G 72.G
Double chain complex      200.E
Double complex      200.H
Double coset (of two subgroups of a group)      190.C
Double distribution, potential of      338.A
Double exponential formula      299.B
Double integral      216.F
Double integral theorem, Fourier      160.B
Double layer, potential of      338.A
Double mathematical induction      294.I)
Double negation, discharge of      411.I
Double point, rational      418.C
Double ratio      343.E
Double sampling inspection      404.C
Double sequence      379.E
Double series      379.E
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте