Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Conductor (of Hecke L-functions)      450.E
Conductor p-(of norm-residue)      14.P
Conductor with a group character      450.G
Conductor-ramification theorem (in class field theory)      59.C
Cone (in a projective space)      343. E
Cone (of a PL embedding)      65.D
Cone (of a simplicial complex)      70.C
Cone (over a space)      202.E
Cone asymptotic      350.B
Cone circular      78.A 111.I
Cone conjugate convex      89.F
Cone convex      89.F
Cone convex polyhedral      89.F
Cone dual convex      89.F
Cone extension (of a PL embedding)      65.D
Cone future      258.A
Cone light      258.A
Cone Mach      205.B
Cone mapping      202.E
Cone natural positive      308.K.
Cone oblique circular      350.B
Cone past      258.A
Cone quadric      350.B
Cone reduced (of a topological space)      202.F
Cone reduced mapping      202.F
Cone regular      384.A
Cone right circular      350.B
Cone self-dual regular      384.E
Cone side      258.A
Confidence coefficient      399.Q
Confidence interval      399.Q
Confidence level      399.Q
Confidence limits      399.Q
Confidence region      399.Q
Confidence region invariance of      399.Q
Confidence region unbiased      399.Q
Confidence region uniformly most powerful      399.Q
Confidence region uniformly most powerful unbiased      399.Q
Configuration central      420.B
Configuration Pascal      78.K
Configuration space      126.L 402.G
Confluent differential equation      167.A
Confluent hypergeometric differential equation      167.A App. Table
Confluent type, function of      167.A
Confluent type, hypergeometric function of      167.A App. Table
Confocal central conies, family of      78.H
Confocal parabolas, family of      78.H
Confocal quadrics, family of      350.E
conformal      77.A
Conformal arc element      110.D
Conformal connection      80.P
Conformal correspondence (between surfaces)      111.I
Conformal curvature      110.D
Conformal curvature tensor, Weyl      80.P App. Table
Conformal differential geometry      110.D
Conformal function, $\mu$-      352.B
Conformal geometry      76.A
Conformal invariant      77.E
Conformal mapping      198.A App. Table
Conformal mapping extremal quasi-      352.C
Conformal mapping generalized      246.I
Conformal mapping quasi-      352
Conformal space      76.A
Conformal structure      191.B
Conformal structure (on a Riemann surface)      367.A
Conformal torsion      110.D
Conformal transformation      80.P 364.F
Conformalalmost      275.C
Conformally equivalent      77.A 367.A 191.B
Conformally fiat      191.B
Conformally flat space      App. A Table
Conforto, Fabio(1909-1954)      3.r
Confounded partially (with blocks)      102.J
Confounded with blocks      102.J
Congruence (in geometry)      155.B
Congruence (in number theory)      297.G
Congruence axiom (of geometry)      155.B
Congruence classes modulo m*, group of      14.H
Congruence linear (in projective geometry)      343.E
Congruence multiplicative      14.H
Congruence of lines      110.B
Congruence subgroup (of a modular group)      122.D
Congruence subgroup principal, of level N      122.D
Congruence zeta function      450.P
Congruent (figures)      139.C
Congruent (segment)      155.B
Congruent affinely      7.E
Congruent in the Erlangen program      137
Congruent modulo m      297.G
Congruent transformation(s)      139.B
Congruent transformation(s), group of      285.C
Conic Lagrange manifold      274.C 345.B
Conic section(s)      78.A
Conic section(s), canonical form of the equation of      78.C
Conic section(s), equation of      78.C
Conic(s)      78.A
Conic(s) central      78.C
Conic(s) focal (of a quadric)      350.E
Conic(s), pencil of      343.E
Conical function      App. A Table
Conical hypersurface, quadric      350.G
Conical surface      111.I
Conical surface quadric      350.B
Conjecture $C_n$ (on Kodaira dimension)      72.H
Conjecture Adams (on J-homomorphisms)      237.I
Conjecture annulus (on combinatorial manifolds)      65.C
Conjecture Artin (on Artin L-functions)      450.G
Conjecture Bieberbach (on univalent functions)      438.C
Conjecture Birch — Swinnerton — Dyer (on L-functions of elliptic curves)      118.D 450.S
Conjecture Burnside (on finite groups)      151 .D
Conjecture entropy      126.K
Conjecture four color      186.T
Conjecture fundamental (in topology)      70.C
Conjecture general knot      235.B
Conjecture generalized Poincare      65.C
Conjecture Hasse (on Hasse zeta function)      450.S
Conjecture Hodge (on cycles on algebraic varieties)      450.S
Conjecture Iwasawa main (on p-adic L-functions)      450.J
Conjecture knot complement      235.B
Conjecture Leopoldt (on p-adic L-functions)      450.J
Conjecture Mordell (on Diophantine equations)      118.E
Conjecture Poincare (on a characterization of spheres)      65.C
Conjecture property P- (on knot groups)      235.B
Conjecture Ramanujan (on automorphic functions)      32.D
Conjecture Ramanujan — Petersson (on Hecke operators)      32.D
Conjecture Sato (on Hasse zeta functions)      450.S
Conjecture Schreier (on simple groups)      151.I
Conjecture Seifert (on vector fields)      126.K 154.D
Conjecture Smith (on knot theory)      235.E
Conjecture stability      126.J
Conjecture Taniyama — Weil (on L-functions of elliptic curves)      450.S
Conjecture Tate (on Hasse $\zeta$-functions)      450.S
Conjecture topological      126.B
Conjecture unknotting      235.E
Conjecture Vandiver (on the class number of cyclotomic fields)      14.L
Conjecture Weil (on congruence zeta functions)      450.Q
Conjugacy $C^r$-      126.B
Conjugacy class (of an element of a group)      190.C
Conjugate $C^r$-      126.B
Conjugate $\Omega$-      126.H
Conjugate (CG method)      302.D
Conjugate (diameter)      78.G
Conjugate (element)      149.J
Conjugate (point in a geodesic)      178.A
Conjugate (point in a projective space)      343.E
Conjugate (quaternion)      29.D
Conjugate (subset)      190.C
Conjugate (with respect to a quadric surface)      350.C
Conjugate axis (of a hyperbola)      78.C
Conjugate complex number      74.A
Conjugate convex cone      89.F
Conjugate differential (on Riemann surface)      367.H
Conjugate exponent      168.C
Conjugate field      149.J 377.C
Conjugate Fourier integral      160.D
Conjugate function      159.E 160.D
Conjugate gradient (CG) method      302.D
Conjugate harmonic (in projective geometry)      343.D
Conjugate harmonic function      193.C
Conjugate hyperbola      78.E
Conjugate ideal (of a fractional ideal)      14.I
Conjugate operator (in Banach spaces)      37.D
Conjugate operator (of a differential operator)      125.F
Conjugate operator (of a linear operator)      251.D
Conjugate planes (with respect to a quadric surface)      350.C
Conjugate point(s) (in a Riemannian manifold)      364.C
Conjugate point(s) (in the calculus of variations)      46.C
Conjugate pole      350.C
Conjugate Radon transform      218.F
Conjugate representation      362.F
Conjugate series (of a trigonometric series)      159.A
Conjugate space (of a linear topological space)      424.D
Conjugate space (of a normed linear space)      37.D
Conjugate topological      126.B
Conjugation mapping (of a Hopf algebra)      203.E
Conjugation operator      164.K
Conjunction (of propositions)      411.B
Conley, Charles Cameron(1933-1984)      126.E
Conlon, Laurence William(1933-)      154.H
Connected $\omega$- (space)      79.C
Connected (affine algebraic group)      13.A
Connected (design)      102.K
Connected (graded module)      203.B
Connected (graph)      186.F
Connected (topological space)      79.A
Connected (treatment)      102.B
Connected arcwise (space)      79.B
Connected component      79.A 186.F
Connected component arcwise-      79.B
Connected component strongly      186.F
Connected K-      186.F
Connected Lie subgroup      249.D
Connected locally $\omega$- (space)      79.C
Connected locally (at a point)      79.B
Connected locally (space)      79.A
Connected locally arcwise (at a point)      79.B
Connected locally arcwise (space)      79. B
Connected locally n- (at a point)      79.C
Connected locally n- (space)      79.C
Connected multiply (plane domain or space)      333.A
Connected n- (pair of topological spaces)      202.L
Connected n- (space)      79.C 202.L
Connected n-ply (plane domain)      333.A
Connected part      150.D
Connected path- (space)      79.B
Connected sequences of functors      200.I
Connected set      79.A
Connected simply (covering Lie group)      249.C
Connected simply (space)      79.C 170
Connected simply, group      13.N
Connected space      79.A
Connected strongly (components)      186.F
Connected sum (of 3-manifolds)      65.E
Connected sum (of oriented compact $C^\infty$-manifolds)      114.F
Connectedness      79 186.F
Connectedness of real numbers      294.E
Connectedness theorem general, due to W. Fulton and J. Hansen      16.I
Connectedness theorem Zariski      16.X
Connecting homomorphism in cohomology      200.F
Connecting homomorphism in homology      200.C
Connecting homomorphism on homology groups      201.C 201.L
Connecting morphism      200.H 200.I
Connection form      80.E 417.B
Connection formula for the solutions of a differential equation      253.A
Connection of spin and statistics      132.A 150.D
Connection problem      253.A
Connection(s)      80
Connection(s) affine      80.H 286.L
Connection(s) affine, coefficients of      80.L
Connection(s) Cartan      80.M
Connection(s) conformal      80.P
Connection(s) Euclidean      364.B
Connection(s) Euclidean, manifold with      109
Connection(s) flat      80.E
Connection(s) Gauss — Manin (of a variety)      16.V
Connection(s) Levi—Civita      364.B
Connection(s) linear      80.H
Connection(s) locally flat      80.E
Connection(s) metric      80.K
Connection(s) normal      365.C
Connection(s) projective      80.O
Connection(s) Riemannian      80.K 364.B
Connection(s) Riemannian, coefficients of      80.L
Connection(s), canonical affine (on $\mathbf{R}^n$)      80.J
Connective fiber space, n-      148.D
Connectives, propositional      411.E
Connectivity (of a space)      201.A
Conner, Pierre Euclide, Jr.(1932-)      237.r 431.E 431.r
Connes, Alain(1947-)      136.F 308.H 308.I 308.r 351.L
Conoid, right      111.I
Conoidal neighborhood      274.E
Conormal      323.F
Conormal bundle      274.E
Conormal sphere bundle      274.E
Conservation laws, even-oddness      150.D
Conservative (measurable transformation)      136.C
Conservative chain      260.A
Conservative process      261.B
Conserved axial-vector currents, partially      132.C
Consistency (condition in the multistep method)      303.E
Consistency (of a logical system)      276.D
Consistency (of an estimator)      399.K
Consistency condition      341.I
Consistency of analysis      156.E
Consistency of the axiom of choice and the continuum hypothesis      33.D
Consistency proof      156.D
Consistency proof of pure number theory      156.E
Consistency relative      156.D
Consistency {$c_n$}-      399.K
Consistent $\omega$-      156.E
Consistent (finite difference scheme)      304.F
Consistent (formal system)      411.I
Consistent (system of axioms)      35.B
Consistent a.s.      399.K
Consistent and asymptotically normal (CAN) estimator      399.K
Consistent estimator      399.K
Consistent Fisher      399.K
Consistent kernel (in potential theory)      338.E
Consistent test      400.K
Consistent test uniformly      400.K
Consistent {$c_n$}-      399.K
Consistent-mass scheme      304.D
Constant breadth, curve of      89.C
Constant curvature, space of      364.D App. Table
Constant curvature, surface of      111.I
Constant function      381.C
Constant inclination, curve of      111.F
Constant mapping      381.C
Constant pressure, specific heat at      419.B
Constant sheaf      383.D
Constant sheaf locally constructible      16. A A
Constant stratum, $\mu$-      418.E
Constant term of a formal power series      376.A
Constant term of a polynomial      337.B
Constant term unfolding      51.D
Constant variational formula      163.E
Constant volume, specific heat at      419.B
Constant width, curve of      111.E
Constant(s)      165.C
Constant(s) arbitrary (in a general solution of a differential equation)      313.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте