Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Class $C^r$, regular mapping of      208.B
Class $C^r$, vector field of      105.M
Class $C^t$, tensor field of      108.O
Class $C^\infty$, function of      106.K
Class $C^\infty$, function of (of many variables)      58.B
Class $C^\infty$, mapping of      286.E
Class $C^\infty$, oriented singular r-simplex of      108.T
Class $C^\infty$, partition of unity of      108.S
Class $C^\infty$, singular r-chain of      108.T
Class $C^\infty$, singular r-cochain of      108.T
Class $C^\omega$, function of      106.K
Class $D^\infty$, curve of      364.A
Class $N_\mathfrak{F}$, null set of      169.E
Class $\hat{\mathscr{A}}$-characteristic (of a real oriented vector Bundle)      237.F
Class $\omega$, function of      84.D
Class $\xi$, function of      84.D
Class ($C^0$), semigroup of      378.B
Class (in axiomatic set theory)      33.C 381.G
Class (of a lattice group)      13.P
Class (of a nilpotent group)      190.J
Class (of a plane algebraic curve)      9.B
Class (of a quadratic form)      348.H 348.I
Class 0, function of      84.D
Class 1, function of      84.D
Class 1, function of at most      84.D
Class algebra (of central simple algebras)      29.E
Class ambig (of a quadratic field)      347. F
Class Bravais      92.B
Class canonical (of an algebraic curve)      9.C
Class canonical cohomology      59.H
Class canonical divisor      11.D
Class characteristic (of a fiber bundle)      147.K
Class characteristic (of a vector bundle)      56
Class characteristic (of an extension of module)      200.K
Class characteristic (of foliations)      154.G
Class characteristic, of a manifold      56.F
Class characteristic, of codimension q      154.G
Class Chern (of a $\mathbf{C}^n$-bundle)      56.C
Class Chern (of a manifold)      56.F
Class Chern (of a real 2n-dimensional almost complex manifold)      147.N
Class Chern (of a U(n)-bundle)      147.N
Class cohomology      200.H
Class combinational Pontryagin      56.H
Class complete      398.B
Class completely additive      270.B
Class conjugacy (of an element of a group)      190.C
Class countably additive      270.B
Class crystal      92.B
Class curve of the second      78.K
Class differential divisor (of a Riemann surface)      11.D
Class divisor (on a Riemann surface)      11.D
Class Dynkin      270.B
Class equivalence      135.B
Class ergodic      260.B
Class essentially complete      398.B
Class Euler — Poincare (of a manifold)      56.F
Class Euler — Poincare (of an oriented $\mathbf{R}^n$-bundle)      56.B
Class field      59.B
Class field theory      59
Class field theory, local      59.G
Class field tower problem      59.F
Class field, absolute      59.A
Class finitely additive      270.B
Class formation      59.H
Class function (on a compact group)      69.B
Class fundamental (of a Poincare pair)      114.J
Class fundamental (of an Eilenberg — MacLane space)      70.F
Class fundamental (of the Thom complex $\mathbf{MG}$)      114.G
Class fundamental, with coefficient $\mathbf{Z}_2$      65.B
Class generalized Hardy      164.G
Class Gevrey      58.G 125.U
Class group divisor      11 .D
Class group of congruence      14.H
Class Hardy      43.F 159.G
Class Hilbert — Schmidt      68.I
Class holosymmetri      92.B
Class homology      200.H 201.B
Class homotopy      202.B
Class ideal (of a Dedekind domain)      67.K
Class ideal (of an algebraic number field)      14.E
Class ideal, in the narrow sense      14.G 343.F
Class idele      6.D
Class idele, group      6.D
Class linear equivalence (of divisors)      16.M
Class main      241.A
Class mapping      202.B
Class minimal complete      398.B
Class monotone      270.B
Class multiplicative      270.B
Class n, function of      84.D
Class n, projective set of      22.D
Class nuclear      68.I
Class number (of a Dedekind domain)      67.K
Class number (of a simple algebra)      27.D
Class number (of an algebraic number field)      14.E
Class of a quadratic form over an algebraic number field      348.H
Class of Abelian groups      202.N
Class oriented cobordism      114.H
Class Pontryagin (of a manifold)      56.F
Class Pontryagin (of an $\mathbf{R}^n$-bundle)      56.D
Class proper      381.G
Class q-dimensional homology      201.B
Class residue (modulo an ideal in a ring)      368.F
Class Steifel — Whitney (of a differentiable manifold)      147.M
Class Stiefel — Whitney (of a manifold)      56.F
Class Stiefel — Whitney (of a topological manifold)      56.F
Class Stiefel — Whitney (of an $\mathbf{R}^n$-bundle)      56.B
Class Stiefel — Whitney (of an O(n)-bundle)      147.M
Class surface of the second      350.D
Class the Dynkin, theorem      270.B
Class the monotone, theorem      270.B
Class theorems, complete      398.D
Class Todd      237.F
Class total Chern      56.C
Class total Pontryagin      56.D
Class total Stiefel — Whitney      56.B
Class trace      68.I
Class universal Chern      56.C
Class universal Euler — Poincare      56.B
Class universal Stiefel — Whitney      56.B
Class unoriented cobordism      114.H
Class Wu (of a topological manifold)      56.F
Class Zygmund      159.E
Classical (potential)      402.G
Classical (state)      402.G
Classical compact real simple Lie algebra      248.T
Classical compact simple Lie group      249.L
Classical complex simple Lie algebra      248.S
Classical complex simple Lie group      249.M
Classical descriptive set theory      356.H
Classical dynamical system      126.L 136.G
Classical group(s)      60.A
Classical group(s), infinite      147.I 202.V
Classical logic      411.L
Classical mechanics      271.A
Classical risk theory      214.C
Classical solution (to Plateau’s problem)      275.C
Classical statistical mechanics      402.A
Classical theory of the calculus of variations      46.C
Classification (with respect to an equivalence relation)      135.B
Classification theorem classification theory of Riemann surfaces      367.E
Classification theorem first (in the theory of obstructions)      305.B
Classification theorem Hopf      202.I
Classification theorem on a fiber bundle      147.G
Classification theorem second (in the theory of obstructions)      305.C
Classification theorem third (in the theory of obstructions)      305.C
Classificatory procedure      280.I
Classifying mapping (map) (in the classification theorem of fiber bundles)      147.G
Classifying space (of a topological group)      174.G 174.H
Classifying space for $\Gamma^r_q$-structures      154.E
Classifying space n- (of a topological group)      147.G
Classifying space, cohomology rings of      App. A Table
Clatworthy, Willard H.      STR
Clausius, Rudolf Julius Emmanuel(1822-1888)      419.A
Clebsch — Gordan coefficient      258.B 353.B
Clebsch, Rudolf Friedrich Alfred(1833-1872)      11.B 226.G 353.B
Clemence, Gerald Maurice(1908-)      55.r 392.r
Clemens, Charles Herbert(1939-)      16.J
Clenshaw — Curtis formulas      299.A
Clenshaw, Charles William(1926-)      299.A
Clifford algebras      61
Clifford group      61.D
Clifford group, reduced      61.D
Clifford group, special      61.D
Clifford number      61.A
Clifford torus      275.F
Clifford torus, generalized      275.F
Clifford, Alfred H.(1908-)      190.r 243.G
Clifford, William Kingdon(1845-1879)      9.C 61.A 61.D 275.F
Clinical trials      40. F
Closable operator      251.D
Closed absolutely (space)      425.U
Closed algebraically (field)      149.I
Closed algebraically (in a field)      149.I
Closed arc      93.B
Closed boundary      164.C
Closed braid      235.F
Closed convex curve      111.E
Closed convex hull      424.H
Closed convex surface      111.I
Closed covering      425.R
Closed curve, simple      93.B
Closed differential      367.H
Closed differential form      105.Q
Closed formula      276.A 299.A
Closed formula in predicate logic      411.J
Closed geodesic      178.G
Closed graph theorem      37.I 251.D 424.X
Closed group      362.J
Closed H- (space)      425.U
Closed half-line (in affine geometry)      7.D
Closed half-space (of an affine space)      7.D
Closed hyperbolic, orbit      126.G
Closed ideals in $L_1(G)$      192.M
Closed image (of a variety)      16.I
Closed integrally (ring)      67.I
Closed interval      140
Closed interval in $\mathbf{R}$      355.C
Closed k- (algebraic set)      13.A
Closed linear subspace (of a Hilbert space)      197.E
Closed manifold      105.B
Closed mapping      425.G
Closed multiplicatively, subset (of a ring)      67.I
Closed operator (on a Banach space)      251.D
Closed orbit      126.D 126.G
Closed orbit hyperbolic      126.G
Closed path (in a graph)      186.F
Closed path (in a topological space)      170
Closed path direct      186.F
Closed path, space of      202.C
Closed plane domain      333.A
Closed quasi-algebraically (field)      118.F
Closed r- (space)      425. U
Closed range theorem      37.J
Closed real, field      149.N
Closed Riemann surface      367.A
Closed set      425.B
Closed set locally      425.J
Closed set relative      425.J
Closed set Zariski      16.A
Closed set, system of      425.B
Closed subalgebra      36.B
Closed subgroup (of a topological group)      423.D
Closed submanifold (of a $C^\infty$-manifold)      105.L
Closed subsystem (of a root system)      13.L
Closed surface      410.B
Closed surface in a 3-dimensional Euclidean space      111.I
Closed system      419.A
Closed system entropy      402.G
Closed term (of a language)      276.A
Closed Zariski      16.A
Closure      425.B
Closure (in a matroid)      66.G
Closure (of an operator)      251.D
Closure convex (in an affine space)      7.D
Closure finite (cell complex)      70.D
Closure integral (of a ring)      67.I
Closure operator      425.B
Closure Pythagorean (of a field)      155.C
Closure, algebraic (of a field)      149.I
Closure-preserving covering      425.X
Clothoid      93.H
Clough, Ray William, Jr.(1920-)      304.r
Cloverleaf knot      235.C
Cluster      375.F
Cluster decomposition Hamiltonian      375.F
Cluster point      425.O
Cluster set(s)      62.A
Cluster set(s) boundary      62.A
Cluster set(s) curvilinear      62.C
Cluster set(s) interior      62.A
Cluster value      62.A
Cluster value theorem      43.G
Clustering property      402.G
CN      App. A Table
Co-echelon space      168.B
Co-NP      71.E
Coalgebra      203.F
Coalgebra cocommutative      203. F
Coalgebra dual      203.F
Coalgebra graded      203.B
Coalgebra homomorphism      203.F
Coalgebra quotient      203.F
Coanalytic set      22.A
Coarse moduli scheme      16.W
Coarse moduli space of curves of genus g      9.J
Coarser relation      135.C
Coarser topology      425.H
Coates, John H.(1945-)      118.D 182.r 450.J 450.r
Cobordant      114.H
Cobordant foliated      154.H
Cobordant h-      114.I
Cobordant mod 2      114.H
Cobordant normally      114.J
Cobordism class      114.H
Cobordism class oriented      114.H
Cobordism class unoriented      114.H
Cobordism group complex      114.H
Cobordism group of homotopy n-spheres, h-      114.I
Cobordism group oriented      114.H
Cobordism group unoriented      114.H
Cobordism ring      114.H
Cobordism ring complex      114.H
Cobordism theorem, h-      114.F
Cobordism, knot      235.G
Coboundary (coboundaries)      200.H
Coboundary (in a cochain complex)      201.H
Coboundary (in the theory of generalized analytic functions)      164.H
Coboundary homomorphism (on cohomology groups)      201.L
Coboundary module of      200.F
Coboundary operator      200.F
Cobounded      201.P
Cochain complex      200.F 201.H
Cochain complex singular      201.H
Cochain equivalence      200.F
Cochain homotopy      200.F
Cochain mapping      200.F 201.H
Cochain subcomplex      200.F
Cochain(s)      200.H 201.H
Cochain(s) (products of)      201.K
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте