Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Additivity countable      270.D
Additivity for the contours (in the curvilinear integral)      94.D
Additivity of probability      342.B
Address      75.B
Address, single-, instructions      75.C
Adele      6.C
Adele and idele      6
Adele group of a linear algebraic group      6.C
Adele group of an algebraic group      13.P
Adele ring (of an algebraic number field)      6.C
Adele, principal      6.C
Adeles and ideles      6
Adem formula      App. A Table
Adem relation      64.B
Adem, Jose(1921 -)      64.B 64.C 305.A App.A Table
Adequacy      396.J
Adherent point      425.B
ADI (alternating direction implicit) method      304.F
Adiabatic law      205.B
Adiabatic process, quasistatic      419.B
Adiabatic wall      419.A
Adjacement matrix      186.G
Adjacent (chamber)      13.R
Adjacent (edges)      186.B
Adjacent (germ)      418.E
Adjacent (vertices)      186.B
Adjoin, a set to a field      149.D
Adjoin, a variable to a commutative ring      337.A
Adjoint boundary condition      315.B
Adjoint boundary value problem      315.B
Adjoint differential equations      252.K
Adjoint differential expression      252.K
Adjoint functor      52.K
Adjoint group of a Lie algebra      248.H
Adjoint group of a Lie group      249. P
Adjoint group, isogenous to an algebraic group      13.N
Adjoint Hilbert space      251.E
Adjoint kernel (of a kernel of a potential)      338.B
Adjoint Lie algebra      248.B
Adjoint matrix      269.I
Adjoint operator (of a linear partial differential operator)      322.E
Adjoint operator (of a microdifferential operator)      274.F
Adjoint operator (of a microlocal operator)      274.F
Adjoint operator (on Banach spaces)      37.D 251.D
Adjoint operator (on Hilbert spaces)      251.E
Adjoint representation of a Lie algebra      248.B
Adjoint representation of a Lie group      249.P
Adjoint representation of a linear representation      362.E
Adjoint space (of a linear topological space)      424.D
Adjoint system (of a complete linear system on an algebraic surface)      15.D
Adjoint system of differential equations      252.K
Adjoint, left (linear mapping)      52.K 256.Q
Adjoint, right (linear mapping)      52.K 256.Q
Adjoint, self-      see Self-adjoint
Adjunction formula      15.D
Adjustment, sampling inspection with      404.C
Adjustment, seasonal      397.N
Adler — Weisberger sum rule      132.C
Adler, Mark      387.C
Adler, Roy L.(1931-)      126.K 136.E 136.H
Adler, Stephen L.(1939-)      132.C 132.r
Admissible (decision function)      398.B
Admissible (estimator)      399.G
Admissible (extremal length)      143.A
Admissible automorphic representations      450.N
Admissible control      405.A
Admissible function      46.A 304.B
Admissible homomorphism (between $\Omega$-groups)      190.E
Admissible isomorphism (between $\Omega$-groups)      190.E
Admissible lattice (in $\mathbf{R}^n$), S-      182.B
Admissible monomial (in Steenrod algebra)      64.B
Admissible normal subgroup      190.E
Admissible ordinal      356.G
Admissible sequence (in Steenrod algebra)      64.B App. Table
Admissible subgroup (of an $\Omega$-group)      190.E
Ado theorem      248.F
Ado, Igor Dmitrievich      248.F 248.r
Adriaan, Anthonisz(c.1543-1620)      332
Advanced type (of functional differential equation)      163.A
AF-algebra      36.H
Affect (of an algebraic equation)      172.G
Affectless algebraic equation      172.G
Affine (morphism)      16.D
Affine algebraic group      13.A
Affine algebraic variety      16.A
Affine algebraic variety, quasi-      16.C
Affine arc element      110.C
Affine arc length      110.C
Affine binormal      110.C
Affine connection      80.H 286.L
Affine connection, canonical (on $\mathbf{R}^n$)      80.J
Affine connection, coefficients of      80.L
Affine coordinates      7.C
Affine curvature      110.C
Affine differential geometry      110.C
Affine frame (of an affine space)      7.C
Affine geometry      7
Affine geometry in the narrower sense      7.E
Affine length      110.C
Affine locally symmetric space      80.J
Affine mapping      7.E
Affine minimal surface      110.C
Affine normal      110.C
Affine principal normal      110.C
Affine ring      16.A
Affine scheme      16.D
Affine space      7.A
Affine symmetric space      80.J
Affine torsion      110.C
Affine transformation(s)      7.E 364.F
Affine transformation(s), group of      7.E
Affine transformation(s), of a manifold with an affine connection      80.J
Affine transformation(s), proper      7.E
Affine transformation(s), regular      7.E
Affine variety      16.A
Affine Weyl group (of a symmetric Riemann space)      413.G
Affinely congruent      7.E
Affinity      7.E
Affinity equivalent      7.E
Age-dependent branching process      44.E
Agmon, Shmuel(1922-)      112.F 112.H 112.Q 323.H 323.r 375.B 375.C
Agnesi, Maria Gaetana(1718-1799)      93.H
Agnesi, witch of      93.H
Aguilar, Joseph      331.F
Ahern, Patrick Robert(1936-)      164.K
Ahlberg, John Harold(1927-)      223.r
Ahlfors finiteness theorem      234.D
Ahlfors five-disk theorem      272.J
Ahlfors function      43.G 77.E
Ahlfors principal theorem      367.B
Ahlfors theory of covering surfaces      367.B
Ahlfors, Lars Valerian(1907-)      17.D 21.N 43.G 43.K 74.r 77.E 77.F.r 122.I 124.B 124.r 143.A 169.E 198.r 234.D 234.E 234.r 272.I 272.J 272.L 352.A 352.B 352.C 352.F 367.B 367.G 367.I 367.r 416 429.D 438.r
Aho, Alfred V      31.r 71.r 75.r 186.r
Aida, Yasuaki(1747-1817)      230
Airy integral      App. A Table
Airy, Sir George Biddell(1801-1892)      325.L App.A Table
Aitken interpolation scheme      223.B App. Table
Aitken, Alexander Craig(1895-1967)      223.B App.A Table
Aizawa, Sadakazu(1934-)      286.X
Aizenman, Michael(1945-)      136.G 340.r 402.G
Akahira, Masafumi(1945-)      128.r 399.K 399.O 400.r
Akahori, Takao(1949-)      72.r
Akaike, Hirotugu(1927-)      421.D
Akaza, Tohru(1927-1983)      234.r
Akbar—Zadeh, Hassan(1927-)      152.C
Akcoglu, Mustafa A.(1934-)      136.B
Akemann, Charles A.(1941-)      36.K
Akhiezer, Naum Ilich(1901-1980)      197.r 251.r 336.r 390.r
Akizuki theorem, Krull —      284.F
Akizuki, Yasuo(1902-1984)      8 59.H 284.F 284.G 368.F
al-Battani, Mohamed ibn Gabis ibn Sinan, Abu Abdallah(858-929)      26 432.C
al-Khwarizmi(Alkwarizmi), Mohammed ibn Musa(c.780-c.850)      26
Alaoglu theorem, Banach- (in a Banach space)      37.E
Alaoglu theorem, Banach- (in a topological linear space)      424.H
Alaoglu, Leonidas(1914-)      37.E 424.H
Albanese variety      16.P
Albanese variety of a compact Kaehler manifold      232.C
Albanese variety strict      16.P
Albanese, Giacomo(1890-1947)      16.P 232.C
Albert, Abraham Adrian(1905-72)      29.F 29.r 149.r 231.r
Albertus Magnus(1193-1280)      372
Alcuin(735-804)      372
Aleksandrov (Alexandroff), Pavel Sergeevich(1896-1982)      22.I 65.r 93.r 99.r 117.A 117.E 117.F 117.r 201.A 201.r 207.C 273.K 425.S—V 425.r 426.* 426.r
Aleksandrov compactification      207.B
Aleksandrov, Aleksandr Danilovich(1912—)      111.r 178.A 255.D 365.H 425.r
Alekseev, Vladimir Mikhailovich(1932-1980)      420.r
Alekseevskii, Dmitril Vladimirovich(1940-)      364.r
Aleph      49.E
Aleph, alpha ($\chi_{\alpha}$)      312.D
Aleph, zero ($\chi_0$)      49.E
Alexander cohomology group      201.M
Alexander duality theorem      210.O
Alexander horned sphere      65.G
Alexander ideal (of a knot)      235.C
Alexander matrix (of a knot)      235.C
Alexander polynomial (of a knot)      235.C
Alexander polynomial (of a link)      235.D
Alexander trick      65.D
Alexander — Kolmogorov — Spanier cohomology theory      201.M
Alexander — Whitney mapping (map)      201.J
Alexander, Herbert James(1940-)      344.F
Alexander, James Waddell(1888-1971)      65.G 201.A 201.J 201.M 201.O 201.P 235.A 235.C 235.D 235.E 426
Alexits, Gyoergy(1899-1978)      317.r
Alfsen, Erik Magnus(1930-)      351.L
Alfven wave      259
Alfven, Hannes(1908-)      259.* 259.r
Algebra      8
Algebra $L_1$- (of a locally compact Hausdorff group)      36.L
Algebra (of sets)      270.B
Algebra (over a field)      203.F
Algebra (semi)simple      29.A
Algebra class (of central simple algebras)      29.E
Algebra class group      29.E
Algebra composition      231.B
Algebra Dirichlet      164.B
Algebra disk      164.B
Algebra division      29.A
Algebra Douglas      164.I
Algebra enveloping      200.L 231.A
Algebra enveloping von Neumann      36.G
Algebra enveloping, universal (of a Lie algebra)      248.J
Algebra extension      29.D 200.L
Algebra exterior (of a linear space)      256.O
Algebra Frobenius      29.H
Algebra full matrix      269.B
Algebra function      164. A
Algebra graded      203.B
Algebra Grassmann (of a linear space)      256.O
Algebra Hecke      29.C 32.D
Algebra homomorphism      29.A
Algebra Hopf      203.H
Algebra Hopf, dual      203.C
Algebra Hopf, elementary      203.D
Algebra Hopf, graded      203.C
Algebra isomorphism      29.A
Algebra j-      384.C
Algebra Jordan      231
Algebra Lie      248.A
Algebra liminal C*-      36.H
Algebra normal j-      384.C
Algebra normal simple      29.E
Algebra of logic      411.A
Algebra operator      308.A
Algebra optional $\sigma$-      407.B
Algebra over a commutative ring      29.A
Algebra PI-      29.J
Algebra quaternion      29.D
Algebra quaternion, generalized      29.D
Algebra quaternion, Hamilton      29.B
Algebra quaternion, totally definite      27.D
Algebra quotient      29.A
Algebra Racah      353.A
Algebra relationship      102.J
Algebra residue class      29.A
Algebra semigroup      29.C
Algebra semigroup, large      29.C
Algebra Staudt      343.C
Algebra Steenrod      64.B
Algebra tensor (on a linear space)      256.K
Algebra Thorn      114.H
Algebra total matrix      269.B
Algebra von Neumann      308.C
Algebra von Neumann, induced      308.C
Algebra von Neumann, reduced      308.C
Algebra zero      29.A
Algebra, $\sigma$, tail      342.G
Algebra, $\sigma$-      270.B
Algebra, $\sigma$-, topological      270.C
Algebra, $\sigma$-, well-measurable      407.B
Algebra, AF-      36.H
Algebra, algebraic      29.J
Algebra, alternative      231.A
Algebra, approximately finite      36.H
Algebra, association      102.J
Algebra, associative      29 231.A
Algebra, augmented      200.L
Algebra, AW*-      36.H
Algebra, Azumaya      29.K
Algebra, Banach      36.A
Algebra, Banach *-      36.F
Algebra, boolean      42.A 243.A
Algebra, Boolean, generalized      42.B
Algebra, C*-      36.G
Algebra, C*-, of type I      430.J
Algebra, C*-group (of a locally compact Hausdorff group)      36.L
Algebra, Calkin      36.J 390.I
Algebra, Cayley      54
Algebra, Cayley, general      54
Algebra, central separable      29.K
Algebra, central simple      29.E
Algebra, Clifford      61.A
Algebra, current      132.C
Algebra, cyclic      29.G
Algebra, derived (of a Lie algebra)      248.C
Algebra, distributive      231.A
Algebra, dual      203.F
Algebra, group      29.C 38.L 192.H
Algebra, homological      200.A
Algebra, increasing family of $\sigma$-      407.B
Algebra, linear      8
Algebra, logmodular      164.B
Algebra, multiplier      36.K
Algebra, nonassociative      231.A
Algebra, postliminal C*-      36.H
Algebra, power associative      231.A
Algebra, predictable $\sigma$-      407.B
Algebra, quasi-Frobenius      29.H
Algebra, reduced      23 LB
Algebra, separable      29.F 29.K 200.L
Algebra, simple      29.A
Algebra, solvable      231. A
Algebra, supplemented      200.L
Algebra, symmetric      29.H
Algebra, uniform      164.A
Algebra, uniserial      29.I
Algebra, uniserial, absolutely      29.I
Algebra, uniserial, generalized      29.I
Algebra, unitary      29.A
Algebra, universal enveloping (of a Lie algebra)      248.J
Algebra, vector      App. A Table
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте