Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Casimir      248.J
Casimir element (of a Lie algebra)      248.J
Casorati determinant      104.D
Casorati — Weierstrass theorem (on essential singularities)      198.D
Casorati, Felice(1835-90)      104.D 198.D
Cassandro, M.      402.G
Casselman, William Allen(1941-)      450.r
Cassels, John William Scott(1922-)      14.r 59.r 118.r 182.r 257.r
Cassini oval      93.H
Cassini, Jean Dominique(1625-1712)      93.H
Casson handle      114.M
Casson, Andrew J.      114.K
Cassou—Nogues, Pierrette(1945-)      450.J
Castaing, Charles(1932-)      443.A
Castelnuovo criterion      15.E
Castelnuovo lemma      3.E 9.H
Castelnuovo, Guido(1865-1952)      3.E 9.H 9.r 12.B 12.r 15.B 15.E 15.G 15.H
Castillon, Giovanni Francesco Mauro Melchior Salveminide(1708-1791)      179.A
Casus irreducibilis      10.D App. Table
Catalan constant      App. A Table
Catalan, Eugene Charles(1814-1894)      App.A Table
Catastrophe point      51.F
Catastrophe set      51.F
Catastrophe theory      51
Catastrophe, elementary      51.E
Categorical (data)      397.B
Categorical (set of closed formulas)      276.F
Categorical system (of axioms)      35.B
Categoricity in powers      276.F
Categories and functors      52
Category      52.A
Category exact      237.J
Category Grothendieck      200.I
Category homotopy of topological spaces      52.B
Category of Abelian groups      52.B
Category of analytic manifolds      52.B
Category of commutative rings      52.B
Category of differentiable manifolds      52.B
Category of groups      52.B
Category of left (right) R-modules      52.B
Category of linear spaces over R      52.B
Category of pointed topological spaces      202.B
Category of rings      52.B
Category of S-objects      52.G
Category of sets      52.B
Category of topological spaces      52.B
Category PL      65.A
Category product      52.A
Category quotient      52.N
Category set of the first      425.N
Category set of the second      425.N
Category shape      382.A
Category, abelian      52.N
Category, additive      52.N
Category, cohomology theory on the      261.Q
Category, diagram in the      52.C
Category, dual      52.F
Catenary      93.H
Catenoid      111.I
Cauchy condensation test      379.B
Cauchy condition (on D-integral and D(*)-integral)      100.E
Cauchy criterion (on the convergence of a sequence of real numbers)      87.C App. Table
Cauchy data      321.A
Cauchy distribution      341.D App. Table
Cauchy existence theorem (for partial differential equations)      320.B
Cauchy filter (on a uniform space)      436.G
Cauchy inequality      211.C App. Table
Cauchy integral formula      198.B
Cauchy integral representation      21.C
Cauchy integral test (for convergence)      379.B
Cauchy integral theorem      198.A
Cauchy integral theorem, stronger form of      198.B
Cauchy net (in a uniform space)      436.G
Cauchy polygon      316.C
Cauchy principal value of an improper integral      216.D
Cauchy principal value of the integral on infinite intervals      216.E
Cauchy problem (for partial differential equations)      315.A 320.B 321.A 325.B
Cauchy problem (of ordinary differential equations)      316.A
Cauchy problem abstract      286.X
Cauchy process      5.F
Cauchy process, asymmetric      5.F
Cauchy process, symmetric      5.F
Cauchy product (of two series)      379.F
Cauchy remainder      App.A Table
Cauchy sequence (in a metric space)      273.J
Cauchy sequence (in a uniform space)      436.G
Cauchy sequence (in an $\mathfrak{a}$-adic topology)      284.B
Cauchy sequence (of rational numbers)      294.E
Cauchy sequence (of real numbers)      355.B
Cauchy sum (of a series)      379.A
Cauchy theorem      379.F
Cauchy transform      164.J
Cauchy — Hadamard formula      339.A
Cauchy — Kovalevskaya existence theorem      321.A
Cauchy — Kovalevskaya theorem, abstract      286.Z
Cauchy — Riemann (differential) equation      198.A 274.G
Cauchy — Riemann equation (for a holomorphic function of several complex variables)      21.C
Cauchy — Riemann equation (for a holomorphic function of two complex variables)      320.F
Cauchy — Riemann structure      344.A
Cauchy — Schwarz inequality      211.C App. Table
Cauchy, A.L.      53
Cauchy, Augustin Louis(1789-1857)      4.D 5.F 20 21.C 53 87.C 100.E 107.A 107.B 164.J 165.A 165.r 190.Q 198.A 198.B 198.E 198.F 198.Q 211.C 216.D 216.E 267 273.J 274.G 284.B 286.X 286.Z 294.E 296 301.G 316.A 316.C 316.G 320.B 320.D 320.I 321.A 321.B 339.A 341.D 344.A 379.A 379.B 379.F 379.K 388.B 436.G App.A Tables 9 10.II
Cauer, D.(1889-1918)      179.B
Cauer, Wilhelm(1900-1945)      282.r
Causality, macroscopic      386.C
Cause, most probable      401.E
Caustic      325.L
Cavalieri,(Francesco) Bonaventura(1598-1647)      20 265
Cayley algebras      54
Cayley algebras, general      54
Cayley number      54
Cayley projective plane      54
Cayley theorem (in group theory)      151.H
Cayley theorem, Hamilton —      269.F
Cayley transform (of a closed symmetric operator in a Hilbert space)      251.I
Cayley transformation      269.J
Cayley, Arthur(1821-95)      12.B 54 105.A 137 151.H 157.A 190.Q 226.G 251.I 267 269.F 269.J 285.A
Cazenave, Thierry      286.Y
CCP (chance-constrained programming)      408.B
CCR      377.A
CCR algebra      36.H
CE mapping      382.D
Cebysev      see Chebyshev
Cech cohomology group (for topological spaces)      201.L 201.P
Cech cohomology group relative      201.M
Cech cohomology group with coefficient sheaf $\mathscr{F}$      383.F
Cech compactification, Stone —      207.C
Cech complete space      425.T 436.I
Cech homology group (for topological spaces)      201.M
Cech homology group, relative      201.M
Cech, Edouard(1893-1960)      110.B 110.r 117.E 201.A 201.M 201.P 207.C 383.F 425.T 425.r 426 436.I
Ceder, Jack G(1933-)      425.Y
Ceiling function      136.D
Ceiling states      402.G
Celestial mechanics      55
cell      70.D
Cell (n — q)-dual      65.B
Cell complex      70.D
Cell complex closure finite      70.D
Cell complex countable      70.D
Cell complex Euclidean      70.B
Cell complex finite      70.D
Cell complex locally countable      70.D
Cell complex locally finite      70.D
Cell complex regular      70.D
Cell convex (in an affine space)      7.D
Cell fundamental (of a symmetric Riemann space)      413.F
Cell n- (in a Hausdorff space)      70.D
Cell topological n-      140
Cell unit      140
Cell-like(CE)      382.D
Cellular approximation theorem      70.D
Cellular cohomology group      201.H
Cellular decomposition (of a Hausdorff space)      70.D
Cellular homology group      201.F 201.G
Cellular mapping (between cell complexes)      70.D
Center (of a central symmetry)      139.B
Center (of a continuous geometry)      85.A
Center (of a group)      190.C
Center (of a hyperbola or ellipse)      78.C
Center (of a lattice)      243.E
Center (of a Lie algebra)      248.C
Center (of a nonassociative algebra)      231.A
Center (of a pencil of hyperplanes)      343.B
Center (of a quadric hypersurface)      7.G
Center (of a quadric surface)      350.A
Center (of a regular polygon)      357.A
Center (of a regular polyhedron)      357.B
Center (of a ring)      368.F
Center (of a solid sphere)      140
Center (of a sphere)      139.I
Center (of a von Neumann algebra)      308.C
Center (of gravity)      271.E
Center (of mass)      271.E
Center manifold theorem      286.V
Center of curvature      111.E
Center of projection      343.B
Center surface      111.I
Centered process      5.B
Centering      5.B
Central composite design      102.M
Central configuration      420.B
Central conic(s)      78.C
Central difference      223.C 304.E App. Table
Central element (in a lattice)      243.E
Central extension (of a group)      190.N
Central figure      420.B
Central limit theorem      250.B
Central moment      397.C
Central motion      126.E
Central potential      315.E
Central processor      75.B
Central quadric hypersurface      7.F 350.G
Central quadric surface      350.B
Central series ascending (of a Lie algebra)      248.C
Central series descending (of a Lie algebra)      248.C
Central series lower (of a group)      190.J
Central series upper (of a group)      190.J
Central simple algebra      29.E
Central simple algebra, similar      29.E
Central symmetry (of an affine space)      139.B
Centralizer (of a subset of a group)      190.C
Centralizer (of a subset of a ring)      368.F
Centrifugal force      271.D
Cerf, Jean(1928-)      114.I
Certainly, almost      342.B 342.D
Certainty equivalent      408.B
Cesari, Lamberto(1910-)      246.r 290.r 314.D 314.r 394.r
Cesaro method of summation of order $\alpha$      379.M
Cesaro method of summation of order $\alpha$, summable by      379.M
Cesaro, Ernesto(1859-1906)      297.D 379.K 379.M
Ceva theorem      7.A
Ceva, Giovanni(1647?-1734?)      7.A
CFL condition      304.F
CG method      302.D
Chaber, Jozef      273.K
Chacon, Rafael Van Severen(1931-)      136.B 136.H 162
Chadan, Khosrow(1930-)      375.r
Chaikin, S.E.      see Khalkin S.E.
Chain      200.H
Chain ascending (in an ordered set)      311.C
Chain ascending (of normal subgroups of a group)      190.F
Chain complex(es)      200.C 200.H 201.B
Chain complex(es) augmented      200.C
Chain complex(es) double      200.E
Chain complex(es) in an Abelian category      201.B
Chain complex(es) of A-modules      200.C
Chain complex(es) oriented simplicial      201.C
Chain complex(es) positive      200.H
Chain complex(es) product double      200.E
Chain complex(es) quotient      200.C
Chain complex(es) relative      200.C
Chain complex(es) singular (of a topological space)      201.E
Chain condition (in an ordered set)      311.C
Chain condition ascending (in an ordered set)      311.C
Chain condition descending (in an ordered set)      311.C
Chain conservative      260.A
Chain descending (in a lattice)      243.F
Chain descending (in an ordered set)      311.C
Chain descending (of (normal) subgroups of a group)      190.F
Chain equivalence      200.C 200.H
Chain general Markov      260.J
Chain homotopy      200.C 200.H
Chain irreducible (a Markov chain)      260.B
Chain mapping      200.C 201.B
Chain mapping over an A-homomorphism      200.C
Chain Markov      260.A
Chain minimal      260.F
Chain normal (in a group)      190.G
Chain normal (in Markov chains)      260.D
Chain q- (of a chain complex)      201.B
Chain recurrent      126.E
Chain recurrent set      126.E 260.B
Chain regular (of integral elements)      428.E
Chain rule      106.C
Chain subcomplex      200.C
Chain theorem      14.J
Chain transformation (between complexes)      200.H
Chain u-      260.I
Chained metric space, well-      79.D
Chaitin complexity, Kolmogorov —      354.D
Chaitin, Gregory J.      71.r 354.D
Chakravarti, Indra-Mohan(1928-)      102.I
Chamber complex      13.R
Chamber positive Weyl      248.R
Chamber Weyl      13.J 248.R
Chance constraint      408.A
Chance move      173.B
Chance-constrained programming      408.A
Chandler, Colston      274.D 274.I 386.C
Chandrasekhar, S.      433.r
Chandrasekharan, Komaravolu(1920-)      121.r 123.r 160.r 379.r 450.r
Chang Chen-Chung(1927-)      276.r 293.r
Chang Sun-Yang(1948-)      164.I
Chang, J.J.      346.E 346.r
Change of variables (in integral calculus)      216.C
Change scalar (of a B-module)      277.L
Change time      261.F 406.B
Channel      375.F
Channel almost finite memory      213.F
Channel coding theory      213.A
Channel d-continuous      213.F
Channel discrete memoryless      213.F
Channel finite memory      213.F
Channel Hilbert space      375.F
Channel noisy      213.A
Channel test      213.E
Channel wave operators      375.F
Chaos      126.N 303.G 433.B
Chaos, propagation of      340.F
Chaplygin, Sergei Alekseevich(1869-1942)      326.B
Chaplygin’s differential equation      326.B
Chapman complement theorem      382.B
Chapman theorem (on $(C,\alpha)$-summation)      379.M
Chapman — Kolmogorov equality      261.A
Chapman — Kolmogorov equation      260.A
Chapman — Robbins — Kiefer inequality      399.D
Chapman, D.G.(1920-)      399.D
Chapman, Sydney(1888-1970)      41.E 260.A 261.A 379.M 402.H 402.r
Chapman, Thomas A.(1940-)      65.C 382.B 382.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте