Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Decision problem sequential      398.F
Decision problem statistical      398.A
Decision procedure, statistical      398.A
Decision process, Markov      127.E
Decision rule sequential      398.F
Decision rule terminal      398.F
Decision space      398.A
Decision theoretically sufficient $\sigma$-field      396.J
Decoder      213.D
Decoding      63.A
Decomposable operator (on a Hilbert space)      308.G
Decompose (a polygon)      155.F
Decomposed into the direct sum of irreducible representations      437.G
Decomposition (of a set)      381.D
Decomposition Bruhat (of an algebraic group)      13.K
Decomposition canonical (of a closed operator)      251.E
Decomposition cellular (of a Hausdorff space)      70.D
Decomposition Chevalley (on algebraic groups)      13.I
Decomposition cluster, Hamiltonian      375.F
Decomposition CW      70.D
Decomposition D-optimality      102.E
Decomposition de Rham (of a Riemannian manifold)      364.E
Decomposition direct (of a group)      190.L
Decomposition Doob — Meyer      262.C
Decomposition dual direct product (of a decomposition of a compact or discrete Abelian group)      422.H
Decomposition ergodic (of a Lebesgue measure space)      136.H
Decomposition Fefferman — Stein      168.B
Decomposition field (of a prime ideal)      14.K
Decomposition formula of Radon      125.CC
Decomposition group (of a prime ideal)      14.K
Decomposition Heegurard      65.C
Decomposition Iwasawa (of a connected semisimple Lie group)      249.T
Decomposition Iwasawa (of a real semisimple Lie algebra)      248.V
Decomposition Jordan (in an ordered linear space)      310.B
Decomposition Jordan (of a function of bounded variation)      166.B
Decomposition Jordan (of a linear mapping)      269.L
Decomposition Jordan (of an additive set function)      380.C
Decomposition Khinchin      395.B
Decomposition Lebesgue, theorem      270.L
Decomposition Levi (on algebraic groups)      13.Q
Decomposition Levi (on Lie algebras)      248.F
Decomposition multiplicative Jordan (of a linear transformation)      269.L
Decomposition number (of a finite group)      362.I
Decomposition number generalized (of a finite group)      362.I
Decomposition Peirce (of a Jordan algebra)      231 .B
Decomposition Peirce left (in a unitary ring)      368.F
Decomposition Peirce right (in a unitary ring)      368.F
Decomposition plane wave      125.CC
Decomposition polar      251.E
Decomposition relative Bruhat      13.Q
Decomposition Riesz (in Markov process)      260.D
Decomposition Riesz (in martingale)      262.C
Decomposition Riesz (of a superharmonic or subharmonic function)      193.S
Decomposition semimartigale      406.B
Decomposition simplicial (of a topological space)      79.C
Decomposition singular value (SVD)      302.E
Decomposition spectral      126.J
Decomposition theorem canonical      86.C
Decomposition theorem for dimension      117.C
Decomposition theorem in class field theory      59.C
Decomposition theorem Lebesgue (on a completely additive set function)      380.C
Decomposition theorem unique (for a 3-manifold)      65.E
Decomposition Wiener — Ito      176.I
Decomposition Witt (of a quadratic form)      348.F
Decomposition Wold      395.D
Decomposition Zariski      15.D
Decomposition-equal polygons      155.F
Decreasing $C^\infty$-function, rapidly      168.B
Decreasing distribution, rapidly      125.O
Decreasing Fourier hyperfunction, exponentially      125.BB
Decreasing function monotone      166.A
Decreasing function strictly      166.A
Decreasing function strictly monotone      166.A
Decreasing real analytic function, exponentially      125.BB
Decreasing sequence, monotonically (of real numbers)      87.B
Decreasing sequence, monotonically rapidly      168.B
Decreasing, monotone      380.B
Decrement, logarithmic (of a damped oscillation)      318.B
Dedekind axiom of continuity (for real numbers)      355.A
Dedekind discriminant theorem      14.J
Dedekind eta function      328.A
Dedekind principle (in a modular lattice)      243.F
Dedekind sum      328.A
Dedekind sum, reciprocity law for      328.A
Dedekind theory of real numbers      294.E
Dedekind zeta function      14.C 450.D
Dedekind, J.W.R.      98
Dedekind, Julius Wilhelm Richard(1831—1916)      11.B 11.r 12.B 14.C—E 14.J 14.U 47 49.F 49.r 67.K 98 156.A 156.r 172.A 172.r 243.F 267 284.G 294.A 294.E 294.r 328 347.H 355.A 355.r 363.r 379.D 450.A 450.D 450.K
Dedekind, test of du Bois-Reymond and      379.D
Deep water wave      205.F
Defect (of a block of representations)      362.I
Defect (of a conjugate class in a group)      362.I
Defect (of a meromorphic function)      272.E
Defect group (of a conjugate class in a group)      362.I
Defect group of a block of representations      362.I
Deficiency (of a closed operator)      251.D
Deficiency (of a linear system on a surface)      15.C
Deficiency (of an algebroidal function)      17.C
Deficiency index (of a closed symmetric operator)      251.I
Deficiency index (of a differential operator)      112.I
Deficiency maximal (of an algebraic surface)      15.E
Deficient number (in elementary theory of numbers)      297.D
Define recursively      356.C
Defined along $V'$ (for a rational mapping)      16.I
Defined over $k'$ (for an algebraic variety)      16.A
Defining functions (of a hyperfunction)      125.V
Defining functions standard      125.Z
Defining ideal (of a formal spectrum)      16.X
Defining module (of a linear system)      16.N
Defining relations (among the generators of a group)      161.A
Definite D-integral      100.D
Definite integral      216.C App. Table
Definite integral (of a hyperfunction)      125.X
Definite negative (function)      394.C
Definite negative (Hermitian form)      348.F
Definite negative (quadratic form)      348.B
Definite positive (function)      36.L 192.B 192.J 394.C 437.B
Definite positive (Hermitian form)      348.F
Definite positive (kernel)      217.H
Definite positive (matrix)      269.I
Definite positive (potential)      338.D
Definite positive (quadratic form)      348.B
Definite positive (sequence)      192.B
Definite quadratic form      348.C
Definite semi- (Hermitian form)      348.F
Definite semi-(kernel)      217.H
Definite totally (quaternion algebra)      27.D
Definition by mathematical induction      294.B
Definition by transfinite induction      311.C
Definition first (of algebraic K-group)      237.J
Definition second (of algebraic K-group)      237.J
Definition truth      185.D
Definition, field of      16.A
Deflation in homological algebra      200.M
Deflation method for an eigenvalue problem      298.C
Deformation (of a graph)      186.E
Deformation (of complex structures)      72.G
Deformation cochain      305.B
Deformation infinitesimal, to the direction $\partial/\partial s$      72.G
Deformation isomonodromic      253.E
Deformation isospectral      387.C
Deformation of a scheme over a connected scheme      16.W
Deformation of a surface      110.A
Deformation projective (between surfaces)      110.B
Deformation retract      202.D
Deformation retract neighborhood      202.D
Deformation retract strong      202.D
Degeneracy (of energy eigenvalues)      351.H
Degeneracy index      17.C
Degeneracy operator (in a semisimphcial complex)      70.E
Degeneracy, set of (of a holomorphic mapping between analytic spaces)      23.C
Degenerate (critical point)      106.L 279.B
Degenerate (eigenvalue)      390.A 390.B
Degenerate (mapping)      208.B
Degenerate (quadratic surface)      350.B
Degenerate (simplex)      70.E
Degenerate kernel      217.F
Degenerate module      118.D
Degenerate series (of unitary representations of a complex semisimple Lie group)      437.W
Degenerate series complementary (of unitary representations of a complex semisimple Lie group)      437.W
Degenerate totally      234.B
Degree (of a 0-cycle on an algebraic variety)      16.M
Degree (of a central simple algebra)      29.E
Degree (of a divisor class)      11.D
Degree (of a divisor of an algebraic curve)      9.C
Degree (of a graph)      186.B
Degree (of a Jordan algebra)      231.B
Degree (of a linear representation)      362.D
Degree (of a matrix representation)      362.D
Degree (of a permutation representation)      362.B
Degree (of a polynomial)      337.A
Degree (of a prime divisor)      9.D
Degree (of a rational homomorphism)      3.C
Degree (of a representation of a Lie algebra)      248.B
Degree (of a representation of a Lie group)      249.O
Degree (of a square matrix)      269.A
Degree (of a term of a polynomial)      337.B
Degree (of a valuation)      439.I
Degree (of an algebraic element)      149.F
Degree (of an algebraic equation)      10.A
Degree (of an algebraic variety)      16.G
Degree (of an angle)      139.D
Degree (of an element with respect to a prime ideal of a Dedekind domain)      439.F
Degree (of an extension)      149.F
Degree (of an ordinary differential equation)      313.A
Degree complementary (of a spectral sequence)      200.J
Degree filtration      200.J
Degree formal (of a unitary representation)      437.M
Degree in-      186.B
Degree k, holomorphic differential forms of      72.A
Degree k, tensor space of      256.I
Degree Leray — Schauder      286.D
Degree local, of mapping      99.B
Degree mapping      99.A
Degree n, alternating group of      151.G
Degree n, component of      200.B
Degree n, general linear group of      60.B
Degree n, projective general linear group of      60.B
Degree n, Siegel modular function of      32.F
Degree n, Siegel modular group of      32.F
Degree n, Siegel space of      32.F
Degree n, Siegel upper half-space of      32.F
Degree n, special linear group of      60.B
Degree n, symmetric group of      151 .G
Degree of a prime divisor of an algebraic function field of dimension 1      9.D
Degree of covering (of a nonsingular curve)      9.I
Degree of freedom (of error sum of squares)      403.E
Degree of freedom (of sampling distributions)      374.B
Degree of freedom (of the dynamical system)      271.F
Degree of mapping      99. A
Degree of ramification (of a branch point)      367.B
Degree of recursive unsolvability      97
Degree of symmetry      431.D
Degree of the point      99.D
Degree of transcendency (of a field extension)      149.K
Degree of unsolvability      97
Degree out-      186.B
Degree p, contravariant tensor of      256.J
Degree q, covariant tensor of      256.J
Degree r, differential form of      105.Q
Degree r, differential form of (on an algebraic variety)      16.O
Degree r, mean of (of a function with respect to a weight function)      211.C
Degree relative (of a finite extension)      257.D
Degree relative (of a prime ideal over a field)      14.I
Degree total (of a spectral sequence)      200.J
Degree transcendence (of a field extension)      149.K
Dehn lemma (on 3-manifolds)      65.E
Dehn, Max(1878-1952)      65.E 155.F 196
Dejon — Nickel method      301.G
Dejon, Bruno F.(1930-)      301.G 301.r
Dekkers, A.J.      NTR
Delaunay curve      93.H
Delaunay, Charles Eugene(1816-1872)      93.H
Delay convention, perfect      51.F
Delay-differential equation      163.A
Delayed recurrent event      260.C
Deleanu, Aristide(1932-)      52.r
Delens, Paul Clement(1889-)      110.r
Deligne, Pierre(1944-)      9.r 12.B 16.V 16.r 32.D 118.B 418.r 428.H 450.A 450.G 450.H 450.J 450.M 450.Q 450.S App.B Table
Dellacherie, Claude(1943-)      22.r 261.r 262.r 407.B 407.r
Delos problem (in geometric construction)      179.A
Delta function, Dirac      App. A Table
Delta, Kronecker      269.A App. Table
Deltheil, Robert      218.r
Demazure, Michel(1937-)      13.r 16.I 16.Z 16.r
Deming, William Edwards(1900-)      280.J 373.F 373.r
Democritus(c.460-c.370 B.C.)      187
Demography      40.D
Denes, Jozsef(1932-)      241.r
Denjoy integrable in the wider sense      100.D
Denjoy integrals      100
Denjoy integrals in the restricted sense      100.D
Denjoy — Carleman condition      168.B
Denjoy — Luzin theorem      159.I
Denjoy, Arnaud(1884-1974)      58.F 79.D 100.A 100.D 126.I 154.D 154.H 154.r 159.I 168.B 429.D
Denker, Manfred(1944-)      136.H
Denominator, partial (of an infinite continued fraction)      83.A
Dense (set)      425.N
Dense (totally ordered set)      311.B
Dense in itself      425.O
Dense locally      154.D
Dense nowhere      425.N
Dense relatively      126.E
Dense Zariski      16.A
Denseness of rational numbers      355.B
Density (of a set of prime ideals)      14.S
Density (of a subset of integers)      4.A
Density (on a maximal torus)      248.Y
Density 4-current      150.B
Density angular momentum      150.B
Density beta      397.D
Density bivariate normal      397.I
Density conditional      397.I
Density cospectral      397.N
Density electric flux      130.A
Density energy      195.B
Density free Lagrangian      150.B
Density function      397.D
Density function bispectral      421.C
Density function marginal      397.I
Density function normal      397.D
Density function rational spectral      176.F
Density gamma      397.D
Density joint      397.I
Density kinetic      218. A
Density Lagrangian      150.B
Density magnetic flux      130.A
Density matrix      351.B
Density posterior      401.B
Density prior      401.B
Density probability      341.D
Density sojourn time      45.G
Density theorem (on discrete subgroups of a Lie group)      122.F
Density theorem Chebotarev      14.S
Density theorem Kaplansky      308.C
Density theorem Lebesgue      100.B
Density theorem von Neumann      308.C
Density, point of (of a measurable set of the real line)      100.B
Deny, Jacques(1916-)      338.M—P 338.r
Dependence, domain of      325.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте