Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Convergence uniform, on compact sets      435.C
Convergence weak (of a sequence of submodules)      200.J
Convergence weak (of operators)      251.C
Convergence weak (of probability measures)      341.F
Convergence Weierstrass criterion for uniform      435.A
Convergence(of a filter)      87.I
Convergence(of a net)      87.H
Convergence(of probability measures)      341 F
Convergence(of truncation errors)      303.B
Convergence, axis of      240.B
Convergence, circle of (of a power series)      339. A
Convergence, exponent of      429.B
Convergence, radius of (of a power series)      339.A
Convergent (continued fraction)      83.A
Convergent (double series)      379.E
Convergent (filtration)      200.J
Convergent (infinite integral)      216.E
Convergent (o)-      87.L
Convergent (o)-star      87.L
Convergent (sequence)      87.B 355.B
Convergent (series)      379.A
Convergent absolutely (double series)      379.E
Convergent absolutely (infinite product)      379.G
Convergent absolutely (Laplace — Stieltjes integral)      240.B
Convergent absolutely (power series)      21.B
Convergent absolutely (series in a Banach space)      443.D
Convergent absolutely (series)      379.C
Convergent commutatively      379.C
Convergent conditionally      379.C 379.E
Convergent intermediate      83.B
Convergent order (in a vector lattice)      310.C
Convergent pointwise      435.B
Convergent power series      370.B
Convergent power series ring      370.B
Convergent principal      83.B
Convergent sequence      355.B
Convergent simply      435.B
Convergent unconditionally      379.C
Convergent uniformly (on a family of sets)      435.C
Convergent uniformly (sequence, series, or infinite product)      435.A
Convergent uniformly absolutely      435.A
Convergent uniformly, in the wider sense      435.C
Convex (function on a G-space)      178.H
Convex (function on a Riemannian manifold)      178.B
Convex (subset of a sphere bundle)      274.E
Convex (subset of a sphere)      274.E
Convex absolutely      424.E
Convex analysis      88
Convex body      89.A
Convex cell (in an affine space)      7.D
Convex closure (in an affine space)      7.D
Convex cone conjugate      89.F
Convex cone dual      89.F
Convex curve, closed      111.E
Convex functions      88.A
Convex functions proper      88.D
Convex functions strictly      88.A
Convex holomorphically, domain      21.H
Convex hull      89.A
Convex hull (in an affine space)      7.D
Convex hull (in linear programming)      255.D
Convex hull (of a boundary curve)      275.B
Convex hull closed      424.H
Convex locally (linear topological space)      424.E
Convex logarithmically (domain)      21.B
Convex matrix (of order m)      212.C
Convex neighborhood      364.C
Convex operator      212.C
Convex polyhedral cone      89.F
Convex polyhedron      89.A
Convex programming      264.C
Convex programming problem      292.A
Convex properly      274.E
Convex rational polyhedral      16.Z
Convex set(s)      89
Convex set(s) absolutely (in a linear topological space)      424.E
Convex set(s) in an affine space      7.D
Convex set(s) P- (for a differential operator      112.C
Convex set(s) regularly      89.G
Convex set(s) strongly P-      112.C
Convex set(s) strongly separated      89.A
Convex surface, closed      111.I
Convex uniformly (normed linear space)      37.G
Convexity theorem Lyapunov      443.G
Convexity theorem M. Riesz      88.C
Convolution (in the theory of Hopf algebra)      203.H
Convolution (of arithmetic functions)      295.C
Convolution (of distributions)      125.M
Convolution (of functions)      159.A 192.H
Convolution (of hyperfunctions)      125.X
Convolution (of probability distributions)      341.E
Convolution generalized (of distributions)      125.M
Convolutional code      63.E
Conway, John Horton      151.I 235.A
Conway, Richard W.      376.r
Cook, Joseph M.(1924-)      375.A
Cook, Roger John(1947-)      118.D
Cook, Stephen Arthur(1939-)      71.E 71.r
Cooke, George Erskine(1932-)      201.r
Cooke, Kenneth Lloyd(1925-)      163.B
Cooke, Richard G.      379.r
Cooley, James William(1926-)      142.D 142.r 304.r
Cooper, William(1935-)      255.D 255.E 408.r
Cooperative game      173.A 173.D
Coordinate axis ith (of a Euclidean space)      140
Coordinate axis of an affine frame      7.C
Coordinate bundle(s)      147.B
Coordinate bundle(s)equivalent      147.B
Coordinate curve (in a Euclidean space)      90.C
Coordinate function (in the Ritz method)      304. B
Coordinate function (of a fiber bundle)      147.B
Coordinate hyperplane (of an affine frame)      7.C
Coordinate hypersurface (in a Euclidean space)      90.C
Coordinate neighborhood of a fiber bundle      147.B
Coordinate neighborhood of a manifold      105.C
Coordinate neighborhood of class $C^r$      105.D
Coordinate ring (of an affine variety)      16.A
Coordinate ring homogeneous      16.A
Coordinate system      90.A
Coordinate system (of a line in a projective space)      343.C
Coordinate system geodesic, in the weak sense      232.A
Coordinate system holomorphic local      72.A
Coordinate system isothermal curvilinear      App. A Table
Coordinate system l-adic      3.E
Coordinate system local (of a topological space)      90.D 105.C
Coordinate system moving      90.B
Coordinate system orthogonal curvilinear      App. A Table
Coordinate system orthogonal, adapted to a flag      139.E
Coordinate system projective      343.C
Coordinate transformation (of a fiber bundle)      147.B
Coordinate transformation (of a locally free $\mathscr{O}_X$-Module)      16.E
Coordinate(s)      90
Coordinate(s) (n+2)-hyperspherical      76.A 90.B
Coordinate(s) (of an element of a direct product of sets)      381.E
Coordinate(s) affine      7.C
Coordinate(s) barycentric (in a Euclidean simplicial complex)      70. B
Coordinate(s) barycentric (in an affine space)      7.C 90.B
Coordinate(s) barycentric (in the polyhedron of a simplicial complex)      70.C
Coordinate(s) bipolar      90.C App. Table
Coordinate(s) bipolar cylindrical      App. A Table
Coordinate(s) canonical (of a Lie group)      249.Q
Coordinate(s) Cartesian (in an affine space)      7.C
Coordinate(s) Chow (of a positive cycle)      16.S
Coordinate(s) circular cylindrical      App. A Table
Coordinate(s) curvilinear      90.C App. Table
Coordinate(s) cylindrical      90.C App. Table
Coordinate(s) ellipsoidal      90.C 133.A App. Table
Coordinate(s) elliptic      90.C 350.E App. Table
Coordinate(s) elliptic cylindrical      App. A Table
Coordinate(s) equilateral hyperbolic      90.C App. Table
Coordinate(s) generalized (in analytical dynamics)      271.F
Coordinate(s) generalized cylindrical      App. A Table
Coordinate(s) geodesic      80.J
Coordinate(s) geodesic polar      90.C
Coordinate(s) Grassmann (in a Grassmann manifold)      90.B
Coordinate(s) homogeneous (of a point in a projective space)      343.C
Coordinate(s) hyperbolic cylindrical      App. A Table
Coordinate(s) hyperplane (of a hyperplane in a projective space)      343.C
Coordinate(s) inhomogeneous (of a point with respect to a frame)      343.C
Coordinate(s) isothermal      90.C
Coordinate(s) ith (of an element relative to a basis)      256.C
Coordinate(s) Klein line      90.B
Coordinate(s) Kruskal      359.D
Coordinate(s) line (of a line)      343.C
Coordinate(s) local (on a topological manifold)      105.C
Coordinate(s) local (on an algebraic variety)      16.O
Coordinate(s) local, transformation of      90.D
Coordinate(s) moving      App. A Table
Coordinate(s) multiplanar      90.C
Coordinate(s) multipolar      90.C
Coordinate(s) normal      90.C
Coordinate(s) oblique (in a Euclidean space)      90.B
Coordinate(s) orthogonal curvilinear      90.C
Coordinate(s) parabolic      90.C
Coordinate(s) parabolic cylindrical      App. A Table
Coordinate(s) parallel (in an affine space)      7.C
Coordinate(s) pentaspherical      90.B
Coordinate(s) plane (of a plane)      343.C
Coordinate(s) Pluecker (in a Grassmann manifold)      90.B
Coordinate(s) polar      90.C App. Table
Coordinate(s) projective      343.C
Coordinate(s) rectangular (in a Euclidean space)      90.B
Coordinate(s) rectangular hyperbolic      90.C
Coordinate(s) rotational      App. A Table
Coordinate(s) rotational hyperbolic      App. A Table
Coordinate(s) rotational parabolic      App. A Table
Coordinate(s) spherical      90.C 133.D
Coordinate(s) tangential polar      90.C
Coordinate(s) tetracyclic      90.B
Coordinate(s) trilinear      90.C
Coordinate(s) tripolar      90.C
Coordinate(s)(in the real line)      355.E
Copernicus, Nicolaus(1473-1543)      360
Coplanar vectors      442.A
Coppel, William Andrew      314.r
Coproduct Hopf      203.D
Coproduct of an element in a graded coalgebra      203.B
Coproduct of commutative algebras      29.A
Coproduct of two objects      52.E
Coradical      293.F
Corbato, Fernando J.      133.r
Cordes, Heinz O.(1925-)      345.A
CoRDIC      142.A
Core      173.D
Coregular representation (of an algebra)      362.E
Corestriction (homomorphism of cohomology groups)      200. M
Corioli force      271.D
Coriolis, Gaspard Gustav de(1792-1843)      271.D
Cornea, Aurel(1933-)      193.U 207.C 207.D 207.r 367.E 367.G 367.r
Corner polyhedron      215.C
Cornish — Fisher expansions      374.F
Cornish, Edmund Alfred(1909-1973)      374.F
Cornu spiral      93.H 167.D
Cornu, Marie Alfred(1841-1902)      93.H 167.D
Corona problem      43.G
Corona theorem      164.I
Coroot      13.J
Correcting capability, error-      63.B
Correcting, error-      63.A
Correctly posed (initial value problem)      321.E
Correctly posed (problems for partial differential equations)      322.A
Corrector (in a multistep method)      303.E
Corrector Milne      303.E
Correlation      343.D
Correlation coefficient (of two random variables)      342.C 397.H
Correlation coefficient canonical      280.E 374.C
Correlation coefficient multiple      397.J
Correlation coefficient partial      397.J
Correlation coefficient population      396.D
Correlation coefficient sample      396.D
Correlation coefficient sample multiple      280.E
Correlation coefficient sample partial      280.E
Correlation coefficient serial      421.B
Correlation inequalities      212.A
Correlation involutive      343.D
Correlation Kendall rank      371.K
Correlation matrix      397.J
Correlation ratios      397.L
Correlation serial      397.N
Correlation serial cross      397.N
Correlation Spearman rank      371.K
Correlation tensor      433.C
Correlogram      397.N
Correspond      358.B
Correspondence      358.B
Correspondence algebraic (of a nonsingular curve)      9.H
Correspondence algebraic (of an algebraic variety)      16.I
Correspondence algebraic, group of classes of      9.H
Correspondence birational      16.I
Correspondence conformal (between surfaces)      111.I
Correspondence geodesic (between surfaces)      111.I
Correspondence homothetic (between surfaces)      111.I
Correspondence inverse      358.B
Correspondence of Combescure      111.F
Correspondence one-to-one      358.B
Correspondence principle      351.D
Correspondence ring (of a nonsingular curve)      9.H
Correspondence similar (between surfaces)      111.I
Correspondence univalent      358.B
Corresponding angles      139.D
Corresponding points (with respect to confocal quadrics)      350.E
Corwin, Lawrence Jay(1943-)      132.r
Cos (cosine)      131.E 432.A
Cosec (cosecant)      131.E 432.A
Cosech (hyperbolic cosecant)      131.F
Cosemisimple      203.F
Coset double (of two subgroups of a group)      190.C
Coset left (of a subgroup of a group)      190.C
Coset right (of a subgroup of a group)      190.C
Coset space (of a topological group) left      423.E
Coset space (of a topological group) right      423.E
Cosh (hyperbolic cosine)      131.F
Cosigma functions      134.H App. Table
Cosine integral      167.D App. Table
Cosine series, Fourier      App. A Table
Cosine transform, Fourier      160.C App. Table
Cosine(s)      432.A
Cosine(s) hyperbolic      131.F
Cosine(s) integral      167.D
Cosine(s) law of (on spherical triangles)      432.B App. Table
Cosine(s) optical direction      180.A
Cosine(s), first law of      432.A App. Table
Cosine(s), second law of      432.A App. Table
Cospecialization (in etale topology)      16.AA
Cospectral density      397.N
Cost      281.D
Cost imputed      255.B
Cost of insurance      214.B
Cost of observation      398.F
Cost shadow      292.C
Cost unit      281.D
Coster, Joseph      386.C
Cot (cotangent)      131.E
Cotangent bundle      147.F
Cotangent vector bundle      147.F
Cotangent(s)      432.A
cotangent(s) hyperbolic      131.F
Cotangent(s), law of      App. A Table
Cotangential sphere bundle      274.E
Cotes formula, Newton — (in numerical integration)      299.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте