|
|
 |
| Авторизация |
|
|
 |
| Поиск по указателям |
|
 |
|
 |
|
|
 |
 |
|
 |
|
| Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
 |
| Предметный указатель |
Convergence uniform, on compact sets 435.C
Convergence weak (of a sequence of submodules) 200.J
Convergence weak (of operators) 251.C
Convergence weak (of probability measures) 341.F
Convergence Weierstrass criterion for uniform 435.A
Convergence(of a filter) 87.I
Convergence(of a net) 87.H
Convergence(of probability measures) 341 F
Convergence(of truncation errors) 303.B
Convergence, axis of 240.B
Convergence, circle of (of a power series) 339. A
Convergence, exponent of 429.B
Convergence, radius of (of a power series) 339.A
Convergent (continued fraction) 83.A
Convergent (double series) 379.E
Convergent (filtration) 200.J
Convergent (infinite integral) 216.E
Convergent (o)- 87.L
Convergent (o)-star 87.L
Convergent (sequence) 87.B 355.B
Convergent (series) 379.A
Convergent absolutely (double series) 379.E
Convergent absolutely (infinite product) 379.G
Convergent absolutely (Laplace — Stieltjes integral) 240.B
Convergent absolutely (power series) 21.B
Convergent absolutely (series in a Banach space) 443.D
Convergent absolutely (series) 379.C
Convergent commutatively 379.C
Convergent conditionally 379.C 379.E
Convergent intermediate 83.B
Convergent order (in a vector lattice) 310.C
Convergent pointwise 435.B
Convergent power series 370.B
Convergent power series ring 370.B
Convergent principal 83.B
Convergent sequence 355.B
Convergent simply 435.B
Convergent unconditionally 379.C
Convergent uniformly (on a family of sets) 435.C
Convergent uniformly (sequence, series, or infinite product) 435.A
Convergent uniformly absolutely 435.A
Convergent uniformly, in the wider sense 435.C
Convex (function on a G-space) 178.H
Convex (function on a Riemannian manifold) 178.B
Convex (subset of a sphere bundle) 274.E
Convex (subset of a sphere) 274.E
Convex absolutely 424.E
Convex analysis 88
Convex body 89.A
Convex cell (in an affine space) 7.D
Convex closure (in an affine space) 7.D
Convex cone conjugate 89.F
Convex cone dual 89.F
Convex curve, closed 111.E
Convex functions 88.A
Convex functions proper 88.D
Convex functions strictly 88.A
Convex holomorphically, domain 21.H
Convex hull 89.A
Convex hull (in an affine space) 7.D
Convex hull (in linear programming) 255.D
Convex hull (of a boundary curve) 275.B
Convex hull closed 424.H
Convex locally (linear topological space) 424.E
Convex logarithmically (domain) 21.B
Convex matrix (of order m) 212.C
Convex neighborhood 364.C
Convex operator 212.C
Convex polyhedral cone 89.F
Convex polyhedron 89.A
Convex programming 264.C
Convex programming problem 292.A
Convex properly 274.E
Convex rational polyhedral 16.Z
Convex set(s) 89
Convex set(s) absolutely (in a linear topological space) 424.E
Convex set(s) in an affine space 7.D
Convex set(s) P- (for a differential operator 112.C
Convex set(s) regularly 89.G
Convex set(s) strongly P- 112.C
Convex set(s) strongly separated 89.A
Convex surface, closed 111.I
Convex uniformly (normed linear space) 37.G
Convexity theorem Lyapunov 443.G
Convexity theorem M. Riesz 88.C
Convolution (in the theory of Hopf algebra) 203.H
Convolution (of arithmetic functions) 295.C
Convolution (of distributions) 125.M
Convolution (of functions) 159.A 192.H
Convolution (of hyperfunctions) 125.X
Convolution (of probability distributions) 341.E
Convolution generalized (of distributions) 125.M
Convolutional code 63.E
Conway, John Horton 151.I 235.A
Conway, Richard W. 376.r
Cook, Joseph M.(1924-) 375.A
Cook, Roger John(1947-) 118.D
Cook, Stephen Arthur(1939-) 71.E 71.r
Cooke, George Erskine(1932-) 201.r
Cooke, Kenneth Lloyd(1925-) 163.B
Cooke, Richard G. 379.r
Cooley, James William(1926-) 142.D 142.r 304.r
Cooper, William(1935-) 255.D 255.E 408.r
Cooperative game 173.A 173.D
Coordinate axis ith (of a Euclidean space) 140
Coordinate axis of an affine frame 7.C
Coordinate bundle(s) 147.B
Coordinate bundle(s)equivalent 147.B
Coordinate curve (in a Euclidean space) 90.C
Coordinate function (in the Ritz method) 304. B
Coordinate function (of a fiber bundle) 147.B
Coordinate hyperplane (of an affine frame) 7.C
Coordinate hypersurface (in a Euclidean space) 90.C
Coordinate neighborhood of a fiber bundle 147.B
Coordinate neighborhood of a manifold 105.C
Coordinate neighborhood of class 105.D
Coordinate ring (of an affine variety) 16.A
Coordinate ring homogeneous 16.A
Coordinate system 90.A
Coordinate system (of a line in a projective space) 343.C
Coordinate system geodesic, in the weak sense 232.A
Coordinate system holomorphic local 72.A
Coordinate system isothermal curvilinear App. A Table
Coordinate system l-adic 3.E
Coordinate system local (of a topological space) 90.D 105.C
Coordinate system moving 90.B
Coordinate system orthogonal curvilinear App. A Table
Coordinate system orthogonal, adapted to a flag 139.E
Coordinate system projective 343.C
Coordinate transformation (of a fiber bundle) 147.B
Coordinate transformation (of a locally free -Module) 16.E
Coordinate(s) 90
Coordinate(s) (n+2)-hyperspherical 76.A 90.B
Coordinate(s) (of an element of a direct product of sets) 381.E
Coordinate(s) affine 7.C
Coordinate(s) barycentric (in a Euclidean simplicial complex) 70. B
Coordinate(s) barycentric (in an affine space) 7.C 90.B
Coordinate(s) barycentric (in the polyhedron of a simplicial complex) 70.C
Coordinate(s) bipolar 90.C App. Table
Coordinate(s) bipolar cylindrical App. A Table
Coordinate(s) canonical (of a Lie group) 249.Q
Coordinate(s) Cartesian (in an affine space) 7.C
Coordinate(s) Chow (of a positive cycle) 16.S
Coordinate(s) circular cylindrical App. A Table
Coordinate(s) curvilinear 90.C App. Table
Coordinate(s) cylindrical 90.C App. Table
Coordinate(s) ellipsoidal 90.C 133.A App. Table
Coordinate(s) elliptic 90.C 350.E App. Table
Coordinate(s) elliptic cylindrical App. A Table
Coordinate(s) equilateral hyperbolic 90.C App. Table
| Coordinate(s) generalized (in analytical dynamics) 271.F
Coordinate(s) generalized cylindrical App. A Table
Coordinate(s) geodesic 80.J
Coordinate(s) geodesic polar 90.C
Coordinate(s) Grassmann (in a Grassmann manifold) 90.B
Coordinate(s) homogeneous (of a point in a projective space) 343.C
Coordinate(s) hyperbolic cylindrical App. A Table
Coordinate(s) hyperplane (of a hyperplane in a projective space) 343.C
Coordinate(s) inhomogeneous (of a point with respect to a frame) 343.C
Coordinate(s) isothermal 90.C
Coordinate(s) ith (of an element relative to a basis) 256.C
Coordinate(s) Klein line 90.B
Coordinate(s) Kruskal 359.D
Coordinate(s) line (of a line) 343.C
Coordinate(s) local (on a topological manifold) 105.C
Coordinate(s) local (on an algebraic variety) 16.O
Coordinate(s) local, transformation of 90.D
Coordinate(s) moving App. A Table
Coordinate(s) multiplanar 90.C
Coordinate(s) multipolar 90.C
Coordinate(s) normal 90.C
Coordinate(s) oblique (in a Euclidean space) 90.B
Coordinate(s) orthogonal curvilinear 90.C
Coordinate(s) parabolic 90.C
Coordinate(s) parabolic cylindrical App. A Table
Coordinate(s) parallel (in an affine space) 7.C
Coordinate(s) pentaspherical 90.B
Coordinate(s) plane (of a plane) 343.C
Coordinate(s) Pluecker (in a Grassmann manifold) 90.B
Coordinate(s) polar 90.C App. Table
Coordinate(s) projective 343.C
Coordinate(s) rectangular (in a Euclidean space) 90.B
Coordinate(s) rectangular hyperbolic 90.C
Coordinate(s) rotational App. A Table
Coordinate(s) rotational hyperbolic App. A Table
Coordinate(s) rotational parabolic App. A Table
Coordinate(s) spherical 90.C 133.D
Coordinate(s) tangential polar 90.C
Coordinate(s) tetracyclic 90.B
Coordinate(s) trilinear 90.C
Coordinate(s) tripolar 90.C
Coordinate(s)(in the real line) 355.E
Copernicus, Nicolaus(1473-1543) 360
Coplanar vectors 442.A
Coppel, William Andrew 314.r
Coproduct Hopf 203.D
Coproduct of an element in a graded coalgebra 203.B
Coproduct of commutative algebras 29.A
Coproduct of two objects 52.E
Coradical 293.F
Corbato, Fernando J. 133.r
Cordes, Heinz O.(1925-) 345.A
CoRDIC 142.A
Core 173.D
Coregular representation (of an algebra) 362.E
Corestriction (homomorphism of cohomology groups) 200. M
Corioli force 271.D
Coriolis, Gaspard Gustav de(1792-1843) 271.D
Cornea, Aurel(1933-) 193.U 207.C 207.D 207.r 367.E 367.G 367.r
Corner polyhedron 215.C
Cornish — Fisher expansions 374.F
Cornish, Edmund Alfred(1909-1973) 374.F
Cornu spiral 93.H 167.D
Cornu, Marie Alfred(1841-1902) 93.H 167.D
Corona problem 43.G
Corona theorem 164.I
Coroot 13.J
Correcting capability, error- 63.B
Correcting, error- 63.A
Correctly posed (initial value problem) 321.E
Correctly posed (problems for partial differential equations) 322.A
Corrector (in a multistep method) 303.E
Corrector Milne 303.E
Correlation 343.D
Correlation coefficient (of two random variables) 342.C 397.H
Correlation coefficient canonical 280.E 374.C
Correlation coefficient multiple 397.J
Correlation coefficient partial 397.J
Correlation coefficient population 396.D
Correlation coefficient sample 396.D
Correlation coefficient sample multiple 280.E
Correlation coefficient sample partial 280.E
Correlation coefficient serial 421.B
Correlation inequalities 212.A
Correlation involutive 343.D
Correlation Kendall rank 371.K
Correlation matrix 397.J
Correlation ratios 397.L
Correlation serial 397.N
Correlation serial cross 397.N
Correlation Spearman rank 371.K
Correlation tensor 433.C
Correlogram 397.N
Correspond 358.B
Correspondence 358.B
Correspondence algebraic (of a nonsingular curve) 9.H
Correspondence algebraic (of an algebraic variety) 16.I
Correspondence algebraic, group of classes of 9.H
Correspondence birational 16.I
Correspondence conformal (between surfaces) 111.I
Correspondence geodesic (between surfaces) 111.I
Correspondence homothetic (between surfaces) 111.I
Correspondence inverse 358.B
Correspondence of Combescure 111.F
Correspondence one-to-one 358.B
Correspondence principle 351.D
Correspondence ring (of a nonsingular curve) 9.H
Correspondence similar (between surfaces) 111.I
Correspondence univalent 358.B
Corresponding angles 139.D
Corresponding points (with respect to confocal quadrics) 350.E
Corwin, Lawrence Jay(1943-) 132.r
Cos (cosine) 131.E 432.A
Cosec (cosecant) 131.E 432.A
Cosech (hyperbolic cosecant) 131.F
Cosemisimple 203.F
Coset double (of two subgroups of a group) 190.C
Coset left (of a subgroup of a group) 190.C
Coset right (of a subgroup of a group) 190.C
Coset space (of a topological group) left 423.E
Coset space (of a topological group) right 423.E
Cosh (hyperbolic cosine) 131.F
Cosigma functions 134.H App. Table
Cosine integral 167.D App. Table
Cosine series, Fourier App. A Table
Cosine transform, Fourier 160.C App. Table
Cosine(s) 432.A
Cosine(s) hyperbolic 131.F
Cosine(s) integral 167.D
Cosine(s) law of (on spherical triangles) 432.B App. Table
Cosine(s) optical direction 180.A
Cosine(s), first law of 432.A App. Table
Cosine(s), second law of 432.A App. Table
Cospecialization (in etale topology) 16.AA
Cospectral density 397.N
Cost 281.D
Cost imputed 255.B
Cost of insurance 214.B
Cost of observation 398.F
Cost shadow 292.C
Cost unit 281.D
Coster, Joseph 386.C
Cot (cotangent) 131.E
Cotangent bundle 147.F
Cotangent vector bundle 147.F
Cotangent(s) 432.A
cotangent(s) hyperbolic 131.F
Cotangent(s), law of App. A Table
Cotangential sphere bundle 274.E
Cotes formula, Newton — (in numerical integration) 299.A
|
|
 |
| Реклама |
 |
|
|