Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mickens R.E. — Mathematical Methods for the Natural and Engineering Sciences
Mickens R.E. — Mathematical Methods for the Natural and Engineering Sciences



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mathematical Methods for the Natural and Engineering Sciences

Àâòîð: Mickens R.E.

Àííîòàöèÿ:

This book provides a variety of methods required for the analysis and solution of equations which arise in the modeling of phenomena from the natural and engineering sciences. It can be used productively by both undergraduate and graduate students, as well as others who need to learn and understand these techniques. A detailed discussion is also presented for several topics that are usually not included in standard textbooks at this level: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations, and various perturbation methods. Each chapter contains a large number of worked examples and provides references to the appropriate literature.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2004

Êîëè÷åñòâî ñòðàíèö: 509

Äîáàâëåíà â êàòàëîã: 05.12.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Airy equation      269 292—293
Asymptotics, asymptotic sequences      497
Asymptotics, elementary operations on asymptotic sequences      499—501
Asymptotics, expansions      497—498 410—412
Asymptotics, gauge functions      495
Asymptotics, generalized asymptotic series      503
Asymptotics, integration by parts      413—416
Asymptotics, Laplace's theorem for integrals      218
Asymptotics, order symbols, "o" and "O"      495—497
Asymptotics, Watson's lemma      417—418
Averaging method, perturbations, derivation      367—369
Averaging method, perturbations, procedure      369—370
Averaging method, perturbations, stability of limit-cycles      272
Averaging method, perturbations, two special cases      370—371
Averaging method, perturbations, worked examples      373—376
Averaging, difference equations      394—396
Averaging, worked examples      396—399
Bernoulli functions      423—425
Bernoulli functions, differential equation      426
Bernoulli numbers      425
Bessel equation      293—296
Bessel functions, general, asymptotic representations      324
Bessel functions, general, equations reducible to      348—350
Bessel functions, general, generating function      323
Bessel functions, general, integral representations      324
Bessel functions, general, Rodrique type formula      323
Bessel functions, general, series representation      322
Bessel functions, special types, Hankel functions      324
Bessel functions, special types, modified Bessel functions      325 326
Beta function, definition      71 72
Beta function, properties      88
Bifurcations, blue sky phenomena      181
Bifurcations, Hopf      184—186
Bifurcations, point      180
Boltzmann problem      464—467
Casorati (determinant)      221 223
Center      135 143 144
Center, second derivative test      178
Characteristic equation      231
Characteristic scales      4—6
Chebyshev polynomials      246—248
Clairaut's equation      241—242
Convolution theorems, Fourier transform      48—49
Convolution theorems, Laplace transform      55
Cosine integral      421—423
Delta function, Dirac      57 276—277 284 330—331
Delta Function, Dirac, definition      76—77
Delta Function, Dirac, derivative      80
Delta Function, Dirac, higher dimensions representations      80—81
Delta Function, Dirac, properties      77—80
DeMoivre's theorem      21
Determinants, special, Hessian      488
Determinants, special, Jacobian      487
Determinants, special, Wronskian      488
Detonation problem      464—467
Difference equations, $\Delta^{-1}$      206—209
Difference equations, definition      200
Difference equations, existence theorem      200
Difference equations, first-order (linear), form      215
Difference equations, first-order (linear), general solution      216
Difference equations, first-order (linear), homogeneous equation      215
Difference equations, first-order (linear), inhomogeneous equation      215
Difference equations, fundamental operators, E and A      202—203 204—205
Difference equations, general order (linear), existence and uniqueness theorem      221
Difference equations, general order (linear), fundamental theorems, homogeneous equations      222
Difference equations, general order (linear), homogeneous equation      220
Difference equations, general order (linear), inhomogeneous equation      220
Difference equations, general order (linear), inhomogeneous equation, solutions      223—224
Difference equations, genesis      197—200
Difference equations, linear, constant coefficients, characteristic equation      231
Difference equations, linear, constant coefficients, homogeneous equation      231
Difference equations, linear, constant coefficients, homogeneous equation, solutions      231—232
Difference equations, linear, constant coefficients, inhomogeneous equation      231
Difference equations, linear, constant coefficients, inhomogeneous equation, solutions      232—234
Difference equations, linear, nonlinear      201
Difference equations, nonlinear, Clairaut's equation      241—242
Difference equations, nonlinear, homogeneous      239
Difference equations, nonlinear, miscellaneous forms      242—243
Difference equations, nonlinear, Riccati equations      239—241
Difference equations, order      200
Difference equations, properties      205—206
Difference equations, uniqueness theorem      200
Differential equations, asymptotics of solutions, Airy equation      292—293
Differential equations, asymptotics of solutions, Bessel equation      293—296
Differential equations, asymptotics of solutions, elimination of first-derivative terms      287—288
Differential equations, asymptotics of solutions, general expansion procedure      296—298
Differential equations, asymptotics of solutions, Liouville — Green transformation      290—292
Differentiation of a definite integral      485
Diffusion equation      49—51 462—464
Dimensionless variables      4—6
Dirichlet integrals, definitions      82
Dirichlet integrals, expressed as gamma functions      83 84
Eigenfunctions      270—271
Eigenfunctions, completeness relation      273
Eigenfunctions, expansion of functions      272
Eigenfunctions, orthogonality      271
Eigenvalues      270—271
Eigenvalues of $2 \times 2$ matrix      485—486
Eigenvalues, reality of      277—278
Electron, magnetic moment      91
Elliptic functions, definitions      100
Elliptic functions, Fourier expansions      103—104
Elliptic functions, properties      100—103
Elliptic integrals, first kind      98
Elliptic integrals, second kind      98
Euler — Maclaurin sum formula      426—427
Euler — Maclaurin sum formula, worked examples      427—431
Euler's formula      21
Even function      26—28
Exponential order      53
Factorial functions      212—215
Family of a function      233
Fermi — Dirac integrals      89 90
First integral      132 133—134 177
Fisher equation, definition      448
Fisher equation, fixed-points      449
Fisher equation, initial conditions      448
Fisher equation, perturbation solution      453—455
Fisher equation, traveling wave solution      448—449
Fisher equation, velocity restrictions, traveling waves      449
Fixed points, classification      143
Fixed points, definition      116 132
Fixed points, stability      122—124
Fourier series      28—33
Fourier series, convergent properties      31
Fourier series, cosine      30
Fourier series, definition      29—30
Fourier series, differentiation      32—33
Fourier series, integration      32
Fourier series, Parseval's identity      33—34
Fourier series, sine      30
Fourier series, square integrable      32
Fourier transforms, convolution theorem      48—49
Fourier transforms, definition      44—45
Fourier transforms, properties      45—47
Functions, named cosine integral      94
Functions, named error function      95
Functions, named exponential integral      95
Functions, named Fresnel cosine and sine integrals      95
Functions, named incomplete gamma function      95
Functions, named sine integral      95
Gamma function, "derivation"      67—68
Gamma function, asymptotic expansion      70
Gamma function, definition      68
Gamma function, Euler expression      69
Gamma function, properties      84—85
Gamma function, Table, $1 \leq x \leq 2$      70
Gamma function, Weierstrass formula      69
Green's functions, construction of      282—283
Green's functions, definition      281
Green's functions, solutions of differential equations      281 284—285 285 286
Harmonic balance, conservative oscillators      386—387
Harmonic balance, direct method      386—388
Harmonic balance, non-conservative oscillators      387—388
Harmonic balance, worked examples      389—394
Harmonic oscillator, 1-dim oscillator      336—337
Harmonic oscillator, 3-dim oscillator      339—342
Harmonic oscillator, matrix elements      338
Homoclinic orbit      166
Hopf-bifurcation theorem      186
Index, fixed-point      186
Integrals, evaluation of by parameter differential      104—108
Korteweg — de Vries equation      455—457
Krylov and Bogoliubov, first approximation      369
l'Hopital's rule      487
Laplace transfer, definition      53
Laplace transfer, properties      54—56
Laplace transfer, theorem      53
Laplace's equation, spherical coordinates      331—333
Leibnitz's relation      487
Level curve      178
Limit-cycle      151
Lindstedt — Poincare method, formal procedure      379—381
Lindstedt — Poincare method, Logistic equation      125—126 249—250
Lindstedt — Poincare method, secular terms      376—378
Lindstedt — Poincare method, worked examples      382—385
Linearly independent functions      221—222
Lotka — Volterra equations      173—177 179—180
mathematical equations      3—4
Mathematical equations, budworm dynamics      11—12
Mathematical equations, decay      6—7
Mathematical equations, Duffings      9—11
Mathematical equations, Fisher      8—9
Mathematical equations, logistic      7—8
Mathematical modeling      1—3
Node      118 122 135 143
Nonlinearity      12—13
Nullclines      133 138
Odd function      26—28
Orthogonal polynomials, general, differential equations      309
Orthogonal polynomials, general, generating functions      310—311
Orthogonal polynomials, general, interval of definition      309—310
Orthogonal polynomials, general, orthogonality relation      310
Orthogonal polynomials, general, recurrence relations      311
Orthogonal polynomials, general, Rodrique's relations      311
Orthogonal polynomials, general, weight functions      310
Orthogonal polynomials, general, zeros      312
Orthogonal polynomials, particular, functions, Chebyshev      315—317
Orthogonal polynomials, particular, functions, Hermite      314—315
Orthogonal polynomials, particular, functions, Laguerre      317—318
Orthogonal polynomials, particular, functions, Legendre      312—314
Orthogonal polynomials, particular, functions, Legendre, second kind and associated functions      319—321
Parseval's identity      33—34
Partial differential equations, general, linear      438—441 462—464
Partial differential equations, general, pulse solutions      443
Partial differential equations, general, similarity methods      459—464
Partial differential equations, general, soliton solutions      442
Partial differential equations, general, traveling waves      441 442
Partial differential equations, types of, advective      442—444 444—446
Partial differential equations, types of, Boltzmann problem      464—467
Partial differential equations, types of, Burgers' equation      444—446 461—462
Partial differential equations, types of, diffusion equations      462—464 467—469
Partial differential equations, types of, Fisher equation      448—455
Partial differential equations, types of, Korteweg — de Vries equation      455—457
Partial differential equations, types of, Schroedinger equation, nonlinear      457—459
Partial fractions      491—492
Periodic functions      25
Perturbation methods, general, general procedure      358 360—361
Perturbation methods, general, related issues      362
Perturbation methods, general, worked examples      362—367
Perturbation methods, particular techniques, averaging, first order      367—371 394—396
Perturbation methods, particular techniques, harmonic balance      385—388
Perturbation methods, particular techniques, Lindstedt — Poincare method      376—382
Phase space, one-dimension      118
Phase space, two-dimension      134—137 138—139
Physical equations      3—4
Piecewise continuous functions      31
Piecewise smooth function      31
Pulse solutions, PDE's      442
Riccati equation      239—241
Riemann – Lebesgue theorem      40
Routh — Hurwitz theorem      486
Saddlepoint      118 122 135 143
Schroedinger equation, nonlinear      457—459
Separation of variables, application      308
Separation of variables, constants of separation      309
Sign function      92
Similarity methods, applied to first-order PDE's      459
Similarity methods, applied to second-order PDE's      460
Similarity methods, invariance under stretching transformations      460
Similarity methods, stretching transformations      459
Similarity methods, worked examples      461—464
Since integral      421—423
Soliton solution      442
Special functions      273—275
Special functions, associated Laguerre      274
Special functions, associated Legendre      274
Special functions, Chebyshev      246—248 274
Special functions, Hermite      274
Special functions, Laguerre      274
Sphere, in uniform flow      334—335
Square wave      35—36 56—57
Stability, asymptotically stable      141
Stability, linear      122—124 139—140
Stirling numbers      213
Stirling's formula      70 419
Stretching transformations      459—460
Sturm — Liouville problems, comparison theorem      266
Sturm — Liouville problems, definition      270
Sturm — Liouville problems, eigenfunctions and eigenvalues      270
Sturm — Liouville problems, orthogonality of eigenfunctions      271—272
Sturm — Liouville problems, separation theorem      266
Symmetries      134 163
Theta function      91
traveling wave      441
Traveling wavefront      442
van der Pol equation      374—376 383—385 393—394 398—399
Vibrating string, boundary conditions      260
Vibrating string, differential equation      260
Vibrating string, fixed and free ends      262—263
Vibrating string, fixed ends      260—261
Vibrating string, free ends      263—264
Watson's lemma      417
Wave equations, linear      51—52 438—441
Wave equations, linear, d'Alembert solution      441
Weight function      272
Zeta function, Riemann, definition      72
Zeta function, Riemann, generalized      74—75
Zeta function, Riemann, prime numbers      75—76
Zeta function, Riemann, properties      73
Zeta function, Riemann, related functions      73—74
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå