|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Mickens R.E. — Mathematical Methods for the Natural and Engineering Sciences |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Airy equation 269 292—293
Asymptotics, asymptotic sequences 497
Asymptotics, elementary operations on asymptotic sequences 499—501
Asymptotics, expansions 497—498 410—412
Asymptotics, gauge functions 495
Asymptotics, generalized asymptotic series 503
Asymptotics, integration by parts 413—416
Asymptotics, Laplace's theorem for integrals 218
Asymptotics, order symbols, "o" and "O" 495—497
Asymptotics, Watson's lemma 417—418
Averaging method, perturbations, derivation 367—369
Averaging method, perturbations, procedure 369—370
Averaging method, perturbations, stability of limit-cycles 272
Averaging method, perturbations, two special cases 370—371
Averaging method, perturbations, worked examples 373—376
Averaging, difference equations 394—396
Averaging, worked examples 396—399
Bernoulli functions 423—425
Bernoulli functions, differential equation 426
Bernoulli numbers 425
Bessel equation 293—296
Bessel functions, general, asymptotic representations 324
Bessel functions, general, equations reducible to 348—350
Bessel functions, general, generating function 323
Bessel functions, general, integral representations 324
Bessel functions, general, Rodrique type formula 323
Bessel functions, general, series representation 322
Bessel functions, special types, Hankel functions 324
Bessel functions, special types, modified Bessel functions 325 326
Beta function, definition 71 72
Beta function, properties 88
Bifurcations, blue sky phenomena 181
Bifurcations, Hopf 184—186
Bifurcations, point 180
Boltzmann problem 464—467
Casorati (determinant) 221 223
Center 135 143 144
Center, second derivative test 178
Characteristic equation 231
Characteristic scales 4—6
Chebyshev polynomials 246—248
Clairaut's equation 241—242
Convolution theorems, Fourier transform 48—49
Convolution theorems, Laplace transform 55
Cosine integral 421—423
Delta function, Dirac 57 276—277 284 330—331
Delta Function, Dirac, definition 76—77
Delta Function, Dirac, derivative 80
Delta Function, Dirac, higher dimensions representations 80—81
Delta Function, Dirac, properties 77—80
DeMoivre's theorem 21
Determinants, special, Hessian 488
Determinants, special, Jacobian 487
Determinants, special, Wronskian 488
Detonation problem 464—467
Difference equations, 206—209
Difference equations, definition 200
Difference equations, existence theorem 200
Difference equations, first-order (linear), form 215
Difference equations, first-order (linear), general solution 216
Difference equations, first-order (linear), homogeneous equation 215
Difference equations, first-order (linear), inhomogeneous equation 215
Difference equations, fundamental operators, E and A 202—203 204—205
Difference equations, general order (linear), existence and uniqueness theorem 221
Difference equations, general order (linear), fundamental theorems, homogeneous equations 222
Difference equations, general order (linear), homogeneous equation 220
Difference equations, general order (linear), inhomogeneous equation 220
Difference equations, general order (linear), inhomogeneous equation, solutions 223—224
Difference equations, genesis 197—200
Difference equations, linear, constant coefficients, characteristic equation 231
Difference equations, linear, constant coefficients, homogeneous equation 231
Difference equations, linear, constant coefficients, homogeneous equation, solutions 231—232
Difference equations, linear, constant coefficients, inhomogeneous equation 231
Difference equations, linear, constant coefficients, inhomogeneous equation, solutions 232—234
Difference equations, linear, nonlinear 201
Difference equations, nonlinear, Clairaut's equation 241—242
Difference equations, nonlinear, homogeneous 239
Difference equations, nonlinear, miscellaneous forms 242—243
Difference equations, nonlinear, Riccati equations 239—241
Difference equations, order 200
Difference equations, properties 205—206
Difference equations, uniqueness theorem 200
Differential equations, asymptotics of solutions, Airy equation 292—293
Differential equations, asymptotics of solutions, Bessel equation 293—296
Differential equations, asymptotics of solutions, elimination of first-derivative terms 287—288
Differential equations, asymptotics of solutions, general expansion procedure 296—298
Differential equations, asymptotics of solutions, Liouville — Green transformation 290—292
Differentiation of a definite integral 485
Diffusion equation 49—51 462—464
Dimensionless variables 4—6
Dirichlet integrals, definitions 82
Dirichlet integrals, expressed as gamma functions 83 84
Eigenfunctions 270—271
Eigenfunctions, completeness relation 273
Eigenfunctions, expansion of functions 272
Eigenfunctions, orthogonality 271
Eigenvalues 270—271
Eigenvalues of matrix 485—486
Eigenvalues, reality of 277—278
Electron, magnetic moment 91
Elliptic functions, definitions 100
Elliptic functions, Fourier expansions 103—104
Elliptic functions, properties 100—103
Elliptic integrals, first kind 98
Elliptic integrals, second kind 98
Euler — Maclaurin sum formula 426—427
Euler — Maclaurin sum formula, worked examples 427—431
Euler's formula 21
Even function 26—28
Exponential order 53
Factorial functions 212—215
Family of a function 233
Fermi — Dirac integrals 89 90
First integral 132 133—134 177
Fisher equation, definition 448
Fisher equation, fixed-points 449
Fisher equation, initial conditions 448
Fisher equation, perturbation solution 453—455
Fisher equation, traveling wave solution 448—449
Fisher equation, velocity restrictions, traveling waves 449
Fixed points, classification 143
Fixed points, definition 116 132
Fixed points, stability 122—124
Fourier series 28—33
Fourier series, convergent properties 31
Fourier series, cosine 30
Fourier series, definition 29—30
Fourier series, differentiation 32—33
Fourier series, integration 32
Fourier series, Parseval's identity 33—34
Fourier series, sine 30
Fourier series, square integrable 32
Fourier transforms, convolution theorem 48—49
Fourier transforms, definition 44—45
Fourier transforms, properties 45—47
Functions, named cosine integral 94
Functions, named error function 95
Functions, named exponential integral 95
Functions, named Fresnel cosine and sine integrals 95
Functions, named incomplete gamma function 95
| Functions, named sine integral 95
Gamma function, "derivation" 67—68
Gamma function, asymptotic expansion 70
Gamma function, definition 68
Gamma function, Euler expression 69
Gamma function, properties 84—85
Gamma function, Table, 70
Gamma function, Weierstrass formula 69
Green's functions, construction of 282—283
Green's functions, definition 281
Green's functions, solutions of differential equations 281 284—285 285 286
Harmonic balance, conservative oscillators 386—387
Harmonic balance, direct method 386—388
Harmonic balance, non-conservative oscillators 387—388
Harmonic balance, worked examples 389—394
Harmonic oscillator, 1-dim oscillator 336—337
Harmonic oscillator, 3-dim oscillator 339—342
Harmonic oscillator, matrix elements 338
Homoclinic orbit 166
Hopf-bifurcation theorem 186
Index, fixed-point 186
Integrals, evaluation of by parameter differential 104—108
Korteweg — de Vries equation 455—457
Krylov and Bogoliubov, first approximation 369
l'Hopital's rule 487
Laplace transfer, definition 53
Laplace transfer, properties 54—56
Laplace transfer, theorem 53
Laplace's equation, spherical coordinates 331—333
Leibnitz's relation 487
Level curve 178
Limit-cycle 151
Lindstedt — Poincare method, formal procedure 379—381
Lindstedt — Poincare method, Logistic equation 125—126 249—250
Lindstedt — Poincare method, secular terms 376—378
Lindstedt — Poincare method, worked examples 382—385
Linearly independent functions 221—222
Lotka — Volterra equations 173—177 179—180
mathematical equations 3—4
Mathematical equations, budworm dynamics 11—12
Mathematical equations, decay 6—7
Mathematical equations, Duffings 9—11
Mathematical equations, Fisher 8—9
Mathematical equations, logistic 7—8
Mathematical modeling 1—3
Node 118 122 135 143
Nonlinearity 12—13
Nullclines 133 138
Odd function 26—28
Orthogonal polynomials, general, differential equations 309
Orthogonal polynomials, general, generating functions 310—311
Orthogonal polynomials, general, interval of definition 309—310
Orthogonal polynomials, general, orthogonality relation 310
Orthogonal polynomials, general, recurrence relations 311
Orthogonal polynomials, general, Rodrique's relations 311
Orthogonal polynomials, general, weight functions 310
Orthogonal polynomials, general, zeros 312
Orthogonal polynomials, particular, functions, Chebyshev 315—317
Orthogonal polynomials, particular, functions, Hermite 314—315
Orthogonal polynomials, particular, functions, Laguerre 317—318
Orthogonal polynomials, particular, functions, Legendre 312—314
Orthogonal polynomials, particular, functions, Legendre, second kind and associated functions 319—321
Parseval's identity 33—34
Partial differential equations, general, linear 438—441 462—464
Partial differential equations, general, pulse solutions 443
Partial differential equations, general, similarity methods 459—464
Partial differential equations, general, soliton solutions 442
Partial differential equations, general, traveling waves 441 442
Partial differential equations, types of, advective 442—444 444—446
Partial differential equations, types of, Boltzmann problem 464—467
Partial differential equations, types of, Burgers' equation 444—446 461—462
Partial differential equations, types of, diffusion equations 462—464 467—469
Partial differential equations, types of, Fisher equation 448—455
Partial differential equations, types of, Korteweg — de Vries equation 455—457
Partial differential equations, types of, Schroedinger equation, nonlinear 457—459
Partial fractions 491—492
Periodic functions 25
Perturbation methods, general, general procedure 358 360—361
Perturbation methods, general, related issues 362
Perturbation methods, general, worked examples 362—367
Perturbation methods, particular techniques, averaging, first order 367—371 394—396
Perturbation methods, particular techniques, harmonic balance 385—388
Perturbation methods, particular techniques, Lindstedt — Poincare method 376—382
Phase space, one-dimension 118
Phase space, two-dimension 134—137 138—139
Physical equations 3—4
Piecewise continuous functions 31
Piecewise smooth function 31
Pulse solutions, PDE's 442
Riccati equation 239—241
Riemann – Lebesgue theorem 40
Routh — Hurwitz theorem 486
Saddlepoint 118 122 135 143
Schroedinger equation, nonlinear 457—459
Separation of variables, application 308
Separation of variables, constants of separation 309
Sign function 92
Similarity methods, applied to first-order PDE's 459
Similarity methods, applied to second-order PDE's 460
Similarity methods, invariance under stretching transformations 460
Similarity methods, stretching transformations 459
Similarity methods, worked examples 461—464
Since integral 421—423
Soliton solution 442
Special functions 273—275
Special functions, associated Laguerre 274
Special functions, associated Legendre 274
Special functions, Chebyshev 246—248 274
Special functions, Hermite 274
Special functions, Laguerre 274
Sphere, in uniform flow 334—335
Square wave 35—36 56—57
Stability, asymptotically stable 141
Stability, linear 122—124 139—140
Stirling numbers 213
Stirling's formula 70 419
Stretching transformations 459—460
Sturm — Liouville problems, comparison theorem 266
Sturm — Liouville problems, definition 270
Sturm — Liouville problems, eigenfunctions and eigenvalues 270
Sturm — Liouville problems, orthogonality of eigenfunctions 271—272
Sturm — Liouville problems, separation theorem 266
Symmetries 134 163
Theta function 91
traveling wave 441
Traveling wavefront 442
van der Pol equation 374—376 383—385 393—394 398—399
Vibrating string, boundary conditions 260
Vibrating string, differential equation 260
Vibrating string, fixed and free ends 262—263
Vibrating string, fixed ends 260—261
Vibrating string, free ends 263—264
Watson's lemma 417
Wave equations, linear 51—52 438—441
Wave equations, linear, d'Alembert solution 441
Weight function 272
Zeta function, Riemann, definition 72
Zeta function, Riemann, generalized 74—75
Zeta function, Riemann, prime numbers 75—76
Zeta function, Riemann, properties 73
Zeta function, Riemann, related functions 73—74
|
|
|
Ðåêëàìà |
|
|
|