Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Artin E. — The Gamma Function
Artin E. — The Gamma Function

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: The Gamma Function

Автор: Artin E.


A generation has passed since the late Emil Artin's little classic on the gamma function appeared in the Hamburger Mathematische Einzelschriften. Since that time, it has been read with joy and fascination by many thousands of mathematicians and students of mathematics. In the United States (and presumably elsewhere as well), it has for many years been hard to find, and dog-eared copies and crude photocopies have been passed from hand to hand. Professor Artin's monograph has given many a student his first look at genuine analysis — the delicacy of its arguments, the precision of its results. Artin had a deep feeling for these aspects of analysis, and he treated them with a master's hand. His undergraduate lectures in the calculus, for example, were filled with elegant constructions and theorems which, alas, Artin never had time to put into printed form. We may be all the more grateful for this beautiful essay, and for its appearance in a new English edition. Various changes made by Artin himself have been incorporated in the present edition. In particular a small error following formula (59) (this edition) was corrected on the basis of a suggestion by Professor Borge Jessen.
Finally, thanks are due to the translator, Mr. Michael Butler, and to the firm of B. G. Teubner for English-language rights.

Язык: en

Рубрика: Математика/Анализ/Специальные функции/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1964

Количество страниц: 39

Добавлена в каталог: 09.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
$\Gamma(x)$      11
$\mu(x)$      20 29
$\pi$      19 24 26
Analytic number theory      28
Bernoulli numbers      32
Convex      1
Elliptical integrals      29
Euler's constant      16
Euler's first integral      18
Euler's functional equation      27
Euler's second integral      11 18
Fejer's theorem      37
Fourier series      30 35
Gauss      15
Gauss' multiplication formula      24
Legendre's relation      24
Log convex      7
Mean-value theorem, analogue of      3
Multiplication formula      24
Rolle's theorem, analogue of      3
Stirling's formula      24 29
Stirling's series      30
Weakly convex      5
Weakly log convex      7
Weierstrass      15
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2023
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте