Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Fourier Series, Transforms, and Boundary Value Problems

Àâòîðû: Hanna J.R., Rowland J.H.

Àííîòàöèÿ:

This volume introduces Fourier and transform methods for solutions to boundary value problems associated with natural phenomena. Unlike most treatments, it emphasizes basic concepts and techniques rather than theory. Many of the exercises include solutions, with detailed outlines that make it easy to follow the appropriate sequence of steps. 1990 edition.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Second Edition

Ãîä èçäàíèÿ: 1990

Êîëè÷åñòâî ñòðàíèö: 354

Äîáàâëåíà â êàòàëîã: 28.03.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abbreviations, $N_{0}$ (set of natural numbers plus zero)      45
Abbreviations, Abel’s uniform convergence test      243
Abbreviations, AI (absolutely integrable)      107
Abbreviations, BVP* (boundary value problem)      1
Abbreviations, DFT* (discrete Fourier transform)      198
Abbreviations, FFT* (fast Fourier transform)      203
Abbreviations, IVP* (initial value problem)      2
Abbreviations, M (any set of n consecutive integers)      199
Abbreviations, N (set of natural numbers)      43
Abbreviations, ODE* (ordinary differential equation)      1
Abbreviations, PDE* (partial differential equation)      1
Abbreviations, PWC (piecewise continuous)      68
Abbreviations, PWS (piecewise smooth)      70
Abbreviations, SI (square integrable)      64
Abbreviations, SLDE* (Sturm — Liouville differential equation)      50
Abbreviations, SLP* (Sturm — Liouville problem)      50
Abbreviations, Z (set of all integers)      48
Absolutely integrable (AI)      107
Adjoint of operator      58
Airy’s equation      18
Approximation in mean      64 198—202
Arbitrary constants      1 6 11—12
Arbitrary functions      23 26 33
Associated Legendre differential equation      162
Associated Legendre functions      164
Associated Legendre polynomials      163
Auxiliary equation      5
Basic Fourier Series      72—74
bernoulli      68
Bessel equation      16 117
Bessel equation, modified type      121
Bessel equation, Sturm — Liouville type      134—135
Bessel functions      18 117 119
Bessel functions, boundedness of      132
Bessel functions, derivatives of      124—125
Bessel functions, first kind      18 119
Bessel functions, generating functions for      130
Bessel functions, graphs of      122
Bessel functions, integral form for      130—132
Bessel functions, integrals of      127—129
Bessel functions, modified      121
Bessel functions, norms      137
Bessel functions, orthogonal sets of      135 137
Bessel functions, second kind      121
Bessel functions, series of      137—139
Bessel functions, zeros of      134—137
Bessel transforms      210
Bessel’s inequality      65
boundary conditions      2 24 219
Boundary conditions, Churchill type      248
Boundary conditions, Dirichlet type      247
Boundary conditions, linear homogeneous      219 222—225
Boundary conditions, Neumann type      248
Boundary conditions, nonhomogeneous      219 225
Boundary conditions, Robin type      248
Boundary value problems (BVPs)      1 24 219 270
Boundary value problems (BVPs), boundedness of solutions      36 222
Boundary value problems (BVPs), defined      24
Boundary value problems (BVPs), methods for solving      173 186 219 222—225 270—273 283—285 307-310
Boundary value problems (BVPs), solutions verified      225—228 242—245
Cauchy equation      7
Cauchy principal value      113—114
Cauchy — Kowalewsky theorem      25
Characteristic equations      5 8 27—31
Characteristic functions      50
Characteristic values      50
Classification, second order PDEs      23—24
Complete orthogonal sets      65—66
Complex conjugate      46—47 198
Complex-valued functions      46—47
Conduction of heat      236—238
Conductivity, thermal      236
Continuous functions      45 59
Continuous functions, piecewise (PWC)      68
Continuous functions, sectionally      68
Convergence in mean      64 66
Convergence of Fourier cosine series      78—79
Convergence of Fourier integrals      108
Convergence of Fourier series      75—76
Convergence of Fourier sine series      79
Convergence, point wise      66
Convergence, point wise, uniform, integrals      102—103
Convergence, point wise, uniform, series      58—59
Convolution      180—181
Convolution for Fourier exponential transforms      192—193
Convolution for Laplace transforms      180—181
Convolution for Mellin transforms      217
Cylindrical coordinates      140
Cylindrical coordinates, Laplacian in      141
Derivative, left hand      69
Derivative, right hand      69
Differential equations, Cauchy (Euler)      7
Differential equations, linear      2
Differential equations, linear homogeneous      2
Differential equations, nonhomogeneous      6
Differential equations, ODEs      1
Differential equations, PDEs      1
Differential equations, systems of      185
Differential operator      2
Differentiation of series      9 92—94
Diffusion, coefficient of      238
Diffusion, equation      238
Dirac delta function      177—179
Dirichlet problem      247—248
Discrete Fourier Transform      197—203
Discrete inner product      198
Discrete least squares approximation      198
Discrete norm      198
D’Alembert      68
d’Alembert solution of      28 34
d’Alembert’s solution      28 34
Eigenfunctions      50
Eigenfunctions, linear independence of      57
Eigenfunctions, series of      61 62
Eigenvalues      50
Elasticity, modulus      230
electrical circuits      271 273
Elliptic type, PDEs of      23—24
Error function      183 301—305
Euler      7 68
Euler, constant      120—121
Euler, differential equation      7
Euler, formulas      74
Euler, identity (relation)      32 112
Even function      76—77
Existence      2 25 169—170
Exponential, Fourier integrals      112—114
Exponential, Fourier series      80—82
Exponential, Fourier transforms      190 192
Exponential, function      5—6 30—31 46-48
Exponential, order      169
Exponential, solutions      5—6 30—31
Extension, nonperiodic      111
Extension, periodic      74 78
Fast Fourier Transform      203—205
Finite difference formulas      200
Finite difference method      241—242
Forward difference method      242
FOURIER      68
Fourier method of solution      222—225
Fourier method of solution, two dimensional      276—280
Fourier series      72—74
Fourier series in two variables      97—99
Fourier series, convergence      75—79
Fourier series, cosine      78
Fourier series, differentiation      92—94
Fourier series, exponential form      80—81
Fourier series, generalized      62
Fourier series, integration      94—96
Fourier series, sine      78—79
Fourier series, uniform convergence of      89—92
Fourier sine integral formula      110
Fourier sine integral formula, theorem      75—76
Fourier sine integral formula, transforms of two variables      208—209
Fourier sine integral formula, transforms, cosine kernel      191
Fourier sine integral formula, transforms, exponential kernel      192
Fourier sine integral formula, transforms, sine kernel      191
Fourier — Bessel series      137—139
Fourier, constants (coefficients)      62—65 73—74 78—79 81
Fourier, cosine form      109—110
Fourier, cosine kernel for      189
Fourier, exponential form      112—113
Fourier, exponential kernel for      190
Fourier, finite transforms      189—190
Fourier, integral formula      107—108
Fourier, integral theorem      108 110—111
Fourier, method      219 270
Fourier, sine form      110
Fourier, sine kernel for      189
Functions, analytic      10 25
Functions, associated      164
Functions, Bessel      18 119—121
Functions, characteristic      50
Functions, complex-valued      46—47
Functions, continuous      45—46 59
Functions, error      183 301—305
Functions, even      76—77
Functions, exponential      5—6 30—31 46-48
Functions, gamma      117—119 170
Functions, generating for Bessel functions      130—132
Functions, generating for Legendre polynomials      149—151
Functions, harmonic      161 248
Functions, hyperbolic      47
Functions, inner product of      43 198
Functions, Legendre      144
Functions, normalized      43
Functions, norms of      43 198
Functions, odd      76—77
Functions, orthogonal      43
Functions, orthonormal      43
Functions, piecewise continuous      68—70
Functions, piecewise smooth      70
Fundamental interval      74
Fundamental set      4
Gamma function      117—119 170
Gauss — Seidel method      251—252
General solution      4 6 28—33
Generalized Fourier series      62
Generalized functions (or distributions)      179
Geometric series (progressions)      180 199
Gibbs phenomenon      86—88
Gram — Schmidt orthogonalization      44—45
Hadamard example      25—26
Hankel transforms      209—212
Harmonic analysis      82—84 198—202
Harmonic functions      161 248
Harmonic functions in cylindrical regions      260—263
Harmonic functions in half-plane      312
Harmonic functions in rectangular regions      248—251
Harmonic functions in spherical regions      267—268
Harmonic functions in strip      313—314
Heat conduction, equation      238
Heat conduction, experimental observations      236
Heat conduction, flow      236
Heat conduction, problem      236—238
Heat conduction, problem, solution      238—241
Heat conduction, problem, uniqueness      244—245
Heat conduction, problem, verification      242—244
Hermite polynomials      49
Hermitian orthogonality      47—49
Homogeneous equations      2 5—7 23
Hooke’s law      270
Hyperbolic functions      47
Hyperbolic type, PDEs of      23—24
Improper integral, principal value of      113—114
Improper integral, uniform convergence of      102—103
Indicial equation      14
Indicial equation, roots of      14
Inequality, Bessel’s      65
Inequality, Schwarz      46
Initial value problems (IVPs)      2—3 24
Inner product      40 43 198
inner product of functions      43
Inner product of vectors      40
Insulated surface      238 245 254 291
Integral equation      184
Integral form, Bessel’s function      130—132
Integral theorem, Fourier      108
Integral transforms      168 189 191 208—210 214—215
Integral transforms, Fourier      191
Integral transforms, Fourier, cosine      191
Integral transforms, Fourier, exponential      192
Integral transforms, Fourier, finite      189—190
Integral transforms, Fourier, finite, cosine      189
Integral transforms, Fourier, finite, exponential      190
Integral transforms, Fourier, finite, sine      189
Integral transforms, Fourier, sine      191
Integral transforms, Fourier, two variables      208
Integral transforms, Hankel      209—210
Integral transforms, Hankel, finite      210
Integral transforms, kernels of      210
Integral transforms, Laplace      168
Integral transforms, Legendre      214
Integral transforms, Mellin      215
Integrating factor      50
Integration of series      94—96
Integro-differential equations      184
Interpolation      202
Inverse transforms      173 189—192 198 208—211 214 217
Jump discontinuity      69
Kernel      168
Kirchhoff s Law      271
Lagrange’s relation      58
Laguerre polynomials      49
Laplace transforms      168
Laplace’s equation      247
Laplacian in cylindrical coordinates      141
Laplacian in rectangular coordinates      247
Laplacian in spherical coordinates      160—161 164
Least squares approximation      64—66
Left hand, derivative      69—70
Left hand, limit      68—69
Legendre, equation      12 142
Legendre, functions of second kind      164
Legendre, functions, associated      164
Legendre, polynomials      142 144
Legendre, polynomials, associated      162—163
Legendre, polynomials, derivatives of      148 151
Legendre, polynomials, generating functions      149
Legendre, polynomials, norms      153—154
Legendre, polynomials, orthogonal sets of      152—153
Legendre, polynomials, Rodrigues’ formula      146—148
Legendre, polynomials, series of      154—155
Legendre, transforms      214—215
Liebmann method      251—252
Limits in the mean      64 66
Limits, one sided      68
Linear combinations      2 4
Linear combinations, extensions of, by integrals      111 297
Linear combinations, extensions of, by series      74 78 224—225 229 240 250
Linear dependence (independence)      3
Linear dependence (independence) of eigenfunctions      57
Linear dependence (independence) of functions      3
Linear differential equations      2 4—6 23
Linear operators      1—2
Linear operators, adjoint of      58
Linear operators, product of      2
Linear operators, self-adjoint      58
Linear operators, sum of      1
Liouville (Sturm — Liouville problem)      50
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå