Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Fourier Series, Transforms, and Boundary Value Problems

Àâòîðû: Hanna J.R., Rowland J.H.

Àííîòàöèÿ:

This volume introduces Fourier and transform methods for solutions to boundary value problems associated with natural phenomena. Unlike most treatments, it emphasizes basic concepts and techniques rather than theory. Many of the exercises include solutions, with detailed outlines that make it easy to follow the appropriate sequence of steps. 1990 edition.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Second Edition

Ãîä èçäàíèÿ: 1990

Êîëè÷åñòâî ñòðàíèö: 354

Äîáàâëåíà â êàòàëîã: 28.03.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Long elastic string      307 314
M-test, Weierstrass, uniform convergence of integrals      102—103
M-test, Weierstrass, uniform convergence of series      91—92
Mean convergence      66
Mean, approximation in      64 66
Mellin transforms      215
Membrane, vibrating      273—276
Membrane, vibrating, BVP for      276
Membrane, vibrating, PDE for      276
Method of Frobenius      13—18
Modified Bessel functions      121
Modulus of elasticity      230
Neumann problem      248
Newton’s Second Law      220 270
Nonhomogeneous ODE      6
Normalized functions      43
Normalized vectors      42
Norms of Bessel functions      135—137
Norms of functions      43
Norms of Legendre polynomials      153 163
Norms of vectors      40
Numerical differentiation formulas, centered difference approximations      22
Numerical differentiation formulas, forward difference approximations      22
Numerical differentiation formulas, forward difference operator      200
Numerical solutions of differential equations      19—20 241—242
Odd functions      77
One sided, derivatives      69—70
One sided, limits      68
Operators      1—2
Operators, adjoint      58
Operators, Euler (Cauchy)      7—8
Operators, linear      1—2
Operators, product of      2
Operators, self-adjoint      58
Operators, sum of      1
Ordinary differential equations (odes)      2
Ordinary differential equations (ODEs), homogeneous      2
Ordinary differential equations (ODEs), linear      1
Ordinary differential equations (ODEs), nonhomogeneous      6
Ordinary point      10
orthogonal series      61—62
Orthogonal sets of Bessel functions      134—137
Orthogonal sets of functions      43
Orthogonal sets of Legendre polynomials      152—153
Orthogonal sets, complete      65—66
Orthogonal sets, Gram — Schmidt process      45
Orthogonality      40 43
Orthogonality of eigenfunctions      50
Orthogonality of functions      43
Orthogonality of vectors      40—42
Orthogonality, Hermitian      47—48
Orthogonality, relative to weight functions      48—49
Oscillations, electrical      271
Oscillations, mechanical      270
Parabolic type PDEs      23—24
Parseval’s identity      66
Partial differential equations (PDEs)      1 23—24
Partial differential equations (PDEs) for elastic bar      231
Partial differential equations (PDEs) for membrane      276
Partial differential equations (PDEs) for vibrating string      221—222
Partial differential equations (PDEs) of diffusion      238
Partial differential equations (PDEs), definition      23
Partial differential equations (PDEs), general linear, of second order      23
Partial differential equations (PDEs), general solutions      23 29—35
Partial differential equations (PDEs), linear types      23—24
Partial fractions      174—175
Partial fractions, Heaviside expansion formula      175—176
Periodic boundary conditions      53
periodic extension      74 78
Periodic functions      53 179 200
Piecewise continuous (PWC) functions      68
Piecewise smooth (PWS) functions      70
Plucked string problem      234
Pointwise convergence      59
Polynomial, associated      162—163
Polynomial, Hermite      49
Polynomial, Lauguerre      49
Polynomial, Legendre      143—144
Potential for a sphere      267
Potential, electric      247
Potential, gravitational      246—247
Potential, magnetic      247
Principal value, of improper integrals      113—114
Principle of superposition of solutions      4 224
Pseudo-norm      198
Recursion formula      10
Regular Sturm — Liouville problem      50
Right hand, derivative      69
Right hand, limit      68
Rodrigues’ formula      146—148
Root of unity      203
Runge — Kutta formula      19—20
Sawtooth function      88
Schwarz inequality      46
Self-adjoint operator      58
Semi-infinite bar, temperature in      295—296
Semi-infinite string      307
Separation of variables, method of      35—36 219
Series of Bessel functions      138—139
Series of Legendre polynomials      154—155
Series solutions      8—13
Series solutions, Frobenius      13—18
Series solutions, Power      8—9 18
Series solutions, Taylor      18
Series, differentiation      9 92—94
Series, Fourier — Bessel      137—139
Series, Fourier, basic      72—73
Series, Fourier, generalized      107—108
Series, Frobenius      13—18
Series, integration of      94—96
Series, orthogonal      61—62
Series, orthonormal      62
Series, power      8—9 18
Series, Sturm — Liouville      62
Series, superposition of solutions by      4
Series, Taylor      18
Series, trigonometric      74
Singular points      10 14 54
Singular points, regular and irregular      14
Singular SLPs      54
Specific heat      236
Spherical coordinates      142 158
Spherical coordinates, Laplacian in      160—161
Spherical regions, potential in      267
Spherical regions, steady state temperature in      238
Spring problem      270
Square integrable (SI)      64
Square wave function      86
Stability      25
Steady state temperatures      238 248 253 256 263—264 268—269
Steady state temperatures in hemisphere      268
Steady state temperatures in semicircular cylinder      256—257
Steady state temperatures in sphere      264
Steady state temperatures in square plate      248
Step-size      241
String, vibrating      219—222
Struck string problem      234
Sturm — Liouville differential equations (SLDEs)      50
Sturm — Liouville differential equations (SLDEs), regular      50
Sturm — Liouville differential equations (SLDEs), singular      54
Sturm — Liouville problems (SLPs)      50
Sturm — Liouville problems (SLPs), periodic      53
Sturm — Liouville problems (SLPs), regular      50
Sturm — Liouville problems (SLPs), singular      54
Sturm — Liouville series      62
Sufficiency      169
Superposition of solutions by integrals      297
Superposition of solutions by series      4 224
Surface, insulated      238 245—246 248 252—254 256
Taylor series      18 61 65
Tchebysheff polynomials of first kind      48
Tchebysheff polynomials of second kind      49
Tchebysheff, first kind      48
Tchebysheff, second kind      49
Temperature in bar      238 245—246
Temperature in circular disk      254
Temperature in infinite bar      297 303—304
Temperature in semi-infinite bar      295—296 302 305
Temperature in semicircular cylinder      256—257
Temperature in sphere      264
Temperature in square plate      248 252—253
Tensile force, on string      219—221
Tension, in membrane      274—276
Termwise, differentiation      9 59 61 92—94
Termwise, integration      59 61 94—96
thermal conductivity      236
Total square error      64
transforms      (see “Integral transforms”)
Trigonometric functions      46—47
Trivial solution      50 52
uniform convergence of Fourier series      89—92
Uniform convergence of improper integrals      102—103
Uniform convergence of series      58—60
Uniform convergence, Abel’s test for      243
Uniqueness of solutions of Cauchy problem      25
Uniqueness of solutions of heat problem      244—245
Uniqueness of solutions of IVPs      2—3
Uniqueness of solutions of vibrating string problem      227—228
Unit step function of Heaviside      175—176
Variation of parameters      14
Vectors, orthogonal      40
Vectors, orthonormal      42
Vectors, position      41
Vectors, rectangular      273—276
Vectors, reference set of      42
Vectors, unit      40
Vibrating membrane, circular      280
Vibrating rod      230—231
Vibrating string      219—222 283
Vibrating string, end conditions      228 283
Vibrating string, equation of      221—222
Vibrating string, initially displaced      221—222
Vibrating string, model for      219—222
Vibrating string, semi-infinite      307—310
Vibrating string, with external force      283
Volterra integral equation      184
Wave equation      221—222
Weierstrass M-test for      59—60 91 102—103
Weierstrass M-test for uniform convergence      58—60 102—103
Weierstrass M-test of integrals      102—103
Weierstrass M-test of series      58—60 242
Weight functions      48—49 53
Well posed problem      25
wronskian      3 56—57
Zeros of Bessel functions      134—137
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå