Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
McComb W. D. — The Physics of Fluid Turbulence
McComb W. D. — The Physics of Fluid Turbulence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Physics of Fluid Turbulence

Автор: McComb W. D.

Аннотация:

This book provides an in-depth look at fluid turbulence: the archetypal non-linear, non-equilibrium problem of statistical physics which has witnessed significant progress in recent years, facilitated by advances in laser anemometry, computer technology, and theoretical methods from quantum physics. A fully integrated work, The Physics of Fluid Turbulence approaches its subject as a universal phenomenon with a universal behavior. It includes a concise summary of the theory and practice of turbulence science up to 1960, followed by a detailed analysis of more recent developments in this area, including a rigorous formulation of the turbulence problem as an example of a non-equilibrium statistical system with strong coupling, along with the application of renormalized perturbation theory. Designed for those new to the subject, the book will also be useful to those who are familiar with the study of turbulence but have not yet approached the subject utilizing the theoretical methods from quantum physics that are covered here.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 572

Добавлена в каталог: 30.05.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\beta$-model      107—109
$\Lambda$ vortices      422—424
$\Lambda$ vortices, evidence from numerical simulation      427
'aliasing', in the calculation of Fourier sums      117
'aliasing', in the one-dimensional turbulent energy spectrum      83
'law of the wall'      see “Mean velocity”
'Toms effect'      132 see
Abernathy, F. H.      136 138 501
Absolute equilibrium ensembles      166
Abuaf, N.      490
Achia, B. U.      509
Ackermann, P. G.      223
Acrivos, A.      497
Agoston, G. A.      133
Alfredsson, P. H.      420 498
ALHDI, abridged LHDI      see “Lagrangian-history direct-interaction theories”
Allan, J. J.      500 503 506 508 509
Allen, J. R.      331
Almost-Markovian models      335 see
Amit, D. J.      141 346
Anand, R. K.      470
Andretta, M.      429
Anselmet, F.      109 329
Antonia, R. A.      62 107 109 329 410 412 425 464 467
Apparent coefficient of viscosity, for a non-Newtonian fluid      495
Apparent coefficient of viscosity, for turbulent flow      8
Aref, H.      402 427 429
Arunachalam, V. R.      133 520
Arundel, P. A.      490
Ash, R. L.      498
Ashurst.W. T.      402 427
Asymptotic series      147
Atkinson, J. D.      412
Aubry, N.      428 430 432
Averaging methods, bulk mean velocity      4
Averaging methods, conditional average      413
Averaging methods, ensemble average      39
Averaging methods, global average      368
Averaging methods, partial average      367
Averaging methods, phase average      425
Averaging methods, shell-averaged energy spectrum      115
Averaging methods, spatial average, rolling average in LES      388
Averaging methods, time averages      5—6
Averaging methods, zone average      411—422
Ayyash, S. Y.      503
Badri Narayanan, M. A.      419
Baker, G. R.      401 427
Bakewell, H. P.      27 418
Baldwin, L. V.      458 470
Balescu, R.      143 157 159 161 165 182 186 193 196 197 205 225 264
Bandyopahyay, P.      421
Barker, S.J.      416 512
Barnes, F.H.      416
Barrow, J.      416
Batchelor, G.K.      2 3 23 50 52 55 59 63 73 74 77 86 100 102 103 105 166 178 313 314 334 441 447 451 457 458 460 467 470 475 477 482 483
BBGKY hierarchy      159
BBGKY-type treatment of turbulence      159—160
Becker, A.H.      490
Bednarik, H.V.      489
Beljaars, A.C.M.      431
Benjamin, T.B.      498
Beran, M.J.      176 182
Berkowicz, R.      467
Berlemont, A.      456
Berman, N.S.      138 448
Bernal, L.P.      432
Bernoulli distribution      see “Binomial distribution”
Bertschy, J.R.      501
Betchov, R.      167
Bewersdorff, H.W.      511
Bhattacharjee, J.K.      379
Binnie, A.M.      457
Binomial distribution      529
Bird, R.B.      192 461 462
Biringen, S.      387 427
Birnbaum, Z.W.      78
Blackman, R.B.      99
Blackwelder, R.F.      411 414 419 421 423 424
Blasius empirical formula for wall shear stress      see also “Wall shear stress”
Blasius empirical formula for wall shear stress, extension to non-Newtonian fluids      499
Blasius empirical formula for wall shear stress, in boundary layers      18
Blasius empirical formula for wall shear stress, in flow through ducts      118
Bobkowicz, A.J.      514 519
Bogard, D.G.      510
Boltzmann equation      161
Bookkeeping parameter k      145 191 206 226 232—233 246 292 301 304 359
Boundary-layer approximation      2
Boundary-layer thickness      12
Boundary-layer thickness, associated Reynolds number      12
Boundary-layer, constant-stress layer      14
Boundary-layer, equations of motion      13
Boundary-layer, turbulent buffer layer      15
Boundary-layer, turbulent inner layer length scale      15
Boundary-layer, turbulent inner layer velocity scale      15
Boundary-layer, turbulent inner layer, outer layer      14
Boundary-layer, turbulent length and velocity scales      14
Boundary-layer, turbulent viscous sublayer      15
Bourret, R.      241
Brachet, M.E.      400 401
Bradbury, L.J.S.      24
Bradshaw, P.      20 27 34 74 86 409
Bragg, G.M.      489
Bragg, R.      497
Breidenthal, R.E.      432
Britz, D.      410
Brodkey, R.S.      112 417 418 419
Browand, F.K.      110 408 409 428
Brown, G.L.      109 407 408 409 432
Brown, L.W.B.      62
Brown-Roshko vortices      see “Coherent structures”
Bruce, C.      496
Bruun, H.H.      410
Bryson, A.W.      520
Buchave, P.      98
Buckley, F.T.      27
Burling, R.W.      117
Bursts      see “Turbulent bursts”
Bushnell, D.M.      498
Butson, J.      509
Callen, N.S.      389
Cambon, C.      335
Cant well, B.J.      416 432
Carlson, D.R.      414
Carr, M.P.      126
Carver, C.E.      500
Central limit theorem      531
Centroid and relative coordinate system for two-point correlations      43
Cermak, J.E.      458
Chambers, F.W.      431
Chambers, T.L.      127
Champagne, F.H.      329 410 414
Chan, K.T.J.      141 513 515 516 517 519 521
Chandrasekhar, S.      222 223 433 484 486
Chandrasekhara, M.S.      24 31 33
Chandrsuda, C.      409
Chao, B.T.      490
Chaos      428—430
Charnay, G.      95
Chatwin, P.C.      457
Chen, W.Y.      78 84 106 165 313 329
Chin, R.W.      501
Chollet, J-P.      392 396 397
Chong, M.S.      423
Chorin, A.J.      331 343 344
Chou, P.Y.      36
Chow, P.L.      502 503
Chung, J.S.      505 506
Clark, R.A.      388
Closure problem      6—7
Closure problem, most general form      42
Cocke, W.J.      74
Coherent structures      2 109 see “Phase “Intermittency
Coherent structures, Brown-Roshko roll vortices in the mixing layer      109—110 407—409
Coherent structures, in free shear flows      410
Coherent structures, quasi-periodic, non-deterministic      109
Coherent structures, turbulent slugs and puffs in pipe flow      414—425
Coherent structures, turbulent spots in boundary layers      413—424
Coherent structures, vortex pairing versus vortex tearing      110 428
Coherent structures, wave packets and turbulent spots      430
Coles, D.      416
Collins, J.C.      141
Collins, M.C.      124
Compiani, M.      429
Comte-Bellot, G.      91 420 424 448
Convolution of two functions      538
Cooley.J.W.      99
Corino.E.R.      112 417 418
Correlation coefficient      see also “Lagrangian autocorrelation and correlation coefficient”
Correlation coefficient, cumulants of a distribution      530
Correlation coefficient, experimental value in flow through a pipe      28
Correlation coefficient, for fluctuating velocities near a solid surface      21
Correlation coefficient, general two-point form      44
Correlation coefficient, transverse and longitudinal correlation coefficients      50—51
Corrsin, S.      74 75 103 105 337 409 417 445 446 448 449 455 457 465 467 474 491
Crawford, H.R.      133 136 139
Crow, S.C.      410
Csanady, G.T.      467
Cummins, H.Z.      92
Curtiss, C.F.      192
d'Humieres, D.      403
Darby, R.      496
Davidson, G.A.      487 488
Davis, R.W.      428
Davis, S.H.      423
de Dominicis, C.      328 351 363
de Vries, D.A.      431
Deardorff, J.W.      120 123 124 387 448 449
Debye, P.      143 201 202
Degrees of freedom in isotropic turbulence      113—124
Degrees of freedom in isotropic turbulence, Fourier modes as      381
Degrees of freedom in isotropic turbulence, reduction of      365
Degrees of freedom in isotropic turbulence, relationship to Taylor-Reynolds number      381—382
Deissler, R.G.      429 467
Desjonqueres, P.      456
Deviatoric stress tensor, Newtonian fluid      3 524
Deviatoric stress tensor, non-Newtonian fluid      495—497
Dhar, D.      74
Diagrams (in perturbation theory)      147
Diagrams (in perturbation theory), application to electron gas      204—205
Diagrams (in perturbation theory), disconnected graphs, reducibly connected graphs and irreducibly connected graphs      198
Diagrams (in perturbation theory), Feynman-type diagrams      186
Diagrams (in perturbation theory), for DIA as a second-order closure      221—222
Diagrams (in perturbation theory), for perturbation expansion of Navier-Stokes equation      213—223
Diagrams (in perturbation theory), for perturbation expansion of Navier-Stokes equation, class A diagrams      217—228
Diagrams (in perturbation theory), for perturbation expansion of Navier-Stokes equation, class B diagrams      218—221
Diagrams (in perturbation theory), introduction to the graphical method      196—201
Diagrams (in perturbation theory), partial summation      188—190
Diffusion      see “Diffusion by continuous movements” “Turbulent
Diffusion by continuous movements: Taylor's analysis      437—441
Diffusion by continuous movements: Taylor's analysis, equivalence to the diffusion problem in Eulerian coordinates      460—461
Diffusion by continuous movements: Taylor's analysis, extension to discrete particles      452
Diffusion by continuous movements: Taylor's analysis, extension to discrete particles, 'crossing trajectories'      456
Diffusion by continuous movements: Taylor's analysis, extension to discrete particles, Tchen's analysis      454—456
Diffusion by continuous movements: Taylor's analysis, extension to shear flows      456—458
Diffusion by continuous movements: Taylor's analysis, extension to three dimensions      441
Diffusion by continuous movements: Taylor's analysis, for long diffusion times      440
Diffusion by continuous movements: Taylor's analysis, for short diffusion times      440
Diffusion by continuous movements: Taylor's analysis, turbulent diffusion coefficient      440—441
Dimant, Y.      519
Dimotakis, P.E.      408 409 416
Direct interaction (in DIA)      338
Direct interaction approximation (DIA)      225—241 see ALHDIA” “Renormalized
Direct interaction approximation (DIA) application to axisymmetric turbulence      334
Direct interaction approximation (DIA) application to inhomogeneous turbulence      331—338
Direct interaction approximation (DIA) calculation of freely decaying turbulence      316—328
Direct interaction approximation (DIA) conservation of energy      236
Direct interaction approximation (DIA) equation for response function      234
Direct interaction approximation (DIA) equation for the correlation function      234
Direct interaction approximation (DIA) idealised convection problem      273
Direct interaction approximation (DIA) inertial-range, 3/2 power law      237
Direct interaction approximation (DIA) infinitesimal response tensor      226
Direct interaction approximation (DIA) mean response tensor      227
Direct interaction approximation (DIA) physical realizability      241
Direct interaction approximation (DIA) spurious convection effects      269—274
Direct interaction approximation (DIA) violation of random Galilean invariance      276
Dissipation rate      9 524 526
Dissipation rate, estimate for pipe flow      117
Dissipation rate, fluctuations in      104 328
Dissipation rate, for decaying turbulence      313
Dissipation rate, local dissipation rate      108
Dissipation rate, measured distribution in flow through a pipe      29—31
Dissipation rate, relationship to energy spectrum of isotropic turbulence      66
Dissipation rate, relationship to the Taylor microscale for isotropic turbulence      52
Dissipation spectrum      84
Dissipation spectrum, for decaying turbulence      313
Dodge, D.W.      498
Domaradzki, J.A.      397
Dopazo, C.      413
Dorfman, J.R.      190
Drag      132 see
Drag reduction      see also “Drag reduction by additives”
Drag reduction by additives      130
Drag reduction by additives additive degradation      134
Drag reduction by additives comparison of macroscopic fibres with microscopic polymers      520—521
Drag reduction by additives definition      131
Drag reduction by additives effect on heat and mass transfer      518—529
Drag reduction by additives effect on turbulent diffusion      519—520
Drag reduction by additives heterogeneous drag reduction      511
Drag reduction by additives homogeneous drag reduction      511
Drag reduction by additives in fibre suspensions      133 140—141
Drag reduction by additives in polymer solutions      133—140
Drag reduction by additives maximum drag reduction asymptote      140
Drag reduction by additives natural occurrence      133
Drag reduction by additives threshold (onset) effect      136—139
Drag reduction, by flexible walls      498
Drag reduction, in heated boundary layers      498
Drag, form drag      132
Drag-reducing fibre suspensions, frequency of turbulent bursts      521
Drag-reducing fibre suspensions, intensities, correlations and spectrum      514—527
Drag-reducing fibre suspensions, mean velocity distributions      512—524
Drag-reducing fibre-polymer suspensions      517—528
Drag-reducing polymer solutions, effect on free turbulence      511—522
Drag-reducing polymer solutions, effect on turbulent structure      505—506
Drag-reducing polymer solutions, frequency of bursts      509 521
Drag-reducing polymer solutions, importance of the region near the wall      509—511
Drag-reducing polymer solutions, mean velocity distributions      506—507
Drag-reducing polymer solutions, spectra and correlations      509
Drag-reducing polymer solutions, turbulent intensities and Reynolds stress      508—509
Drag-reducing polymer solutions, ultimate mean velocity profile      507
Drain, L.E.      98
Drazin, P.G.      433
Driscoll, R.J.      84
Dubois, D.      337
Dukler, A.E.      484
Dumas, R.      464
Durbin, P.A.      451
Durrani, T.S.      98
Durst, F.      98 490
Dwyer, H.A.      126
Early turbulence      see “Non-Newtonian fluids”
Eckelmann, H.      24 419 421 423
Eddy diffusivity      464 see “Diffusion
Eddy turnover time      315
Eddy-viscosity hypothesis      20 see
Eddy-viscosity hypothesis, Boussinesq form      128
Eddy-viscosity hypothesis, Heisenberg-type      76 430
Eddy-viscosity hypothesis, Kolmogorov-Prandtl form      127
Edwards, A.V.F.      402
Edwards, S.F.      184 225 241 242 243 244 247 249 250 252 253 254 255 257 258 262 265 290 291 292 294 298 302 335 336 339 340 364 379 391 497
Edwards-Fokker-Planck theory      241—257 see
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте