|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
McComb W. D. — The Physics of Fluid Turbulence |
|
|
Предметный указатель |
Lagrangian-history direct-interaction (LHDI) theories, abridged LHDI theory 286—288
Lagrangian-history direct-interaction (LHDI) theories, compatibility with the Kolmogorov inertial-range spectrum 286
Lagrangian-history direct-interaction (LHDI) theories, computation for decaying turbulence 324—328
Lagrangian-history direct-interaction (LHDI) theories, DIA adapted to Lagrangian-history coordinates 282—286
Lagrangian-history direct-interaction (LHDI) theories, Lagrangian coordinates 278
Lagrangian-history direct-interaction (LHDI) theories, Lagrangian-history formulation of the equations of motion 278—281
Lagrangian-history direct-interaction (LHDI) theories, Lagrangian-history formulation of the equations of motion, generalized velocity, solenoidal part and curl-free part 279
Lagrangian-history direct-interaction (LHDI) theories, random Galilean invariance 285—286 325
Lagrangian-history direct-interaction (LHDI) theories, statistical formulation: moments of the generalized velocity field 281—282
Lagrangian-history direct-interaction (LHDI) theories, strain-based LHDI and ALHDI 284—290
Lallemand, P. 403
Lalor, M.J. 490
Landahl, M.T. 430 431 498
Landau, L.D. 3 104 113 114
Langevin equation see also “Markov process”
Langevin equation, generalized to turbulence 309 351
Large eddy simulation (LES) 118 381 see
Large eddy simulation (LES), Heisenberg-type effective viscosity 119
Large eddy simulation (LES), in configuration space 120
Large eddy simulation (LES), in wavenumber space 118—120 390—391
Large eddy simulation (LES), Leonard stress 122
Large eddy simulation (LES), resolved scales 121
Large eddy simulation (LES), shear flows 387—388
Large eddy simulation (LES), Smagorinsky model 122
Large eddy simulation (LES), subgrid scales 121
Larsen, P.S. 167 490
Laser anemometer 92
Laser anemometer, differential Doppler mode 95
Laser anemometer, frequency shifting 95
Laser anemometer, optical background 545—549
Lattice gas models 402
Lau, J.C. 95
Laufer, J. 24 27 120
Launder, B.E. 127 128 130 336
Lauterborn, W. 98
Lawn, C.J. 24 29 85 86
Leal;L.G. 126
Lee, C.O. 506
Lee, J. 167
Lee, L.L. 206 220 221 223
Lee, T.D. 166
Lee, W.K. 141 497 517
Leith, C.E. 309 337
Length scales see “Taylor microscale” “Integral” “Length “Kolmogorov “Inner-layer “Boundary
Leonard, A. 120 122 123 124 402 427
Leonard, A.D. 491
Leorat, J. 337
Lesieur, M. 328 392 396 397
Leslie, D.C. 60 251 277 283 335 336 389 392 395 397
Levich, E. 351
Lewis, M.B. 160
Lewis, R.M. 167 169 171 172 176
Libby, J.F. 412 413
Libby, P.A. 491
Lifshitz, E.M. 3 104 113 114
Lightfoot, E.N. 461
Lilly, D.K. 123
Lim, T.T. 414
Lin, C-H. 491
Lin, C.C. 433 451
Lin, J-T. 84
Liouville equation, for an inviscid fluid 166
Liouville equation, for turbulence 242 258 264
Liouville equation, in statistical mechanics 157
Liouville equation, time-dependent for turbulence 263
Lipowsky, R. 290
Little, R.C. 134 501
Local energy-transfer (LET) theory 300—307
Local energy-transfer (LET) theory, application to the computation of total energy decay in, 3D turbulence 337
Local energy-transfer (LET) theory, comparison with DIA 306—307
Local energy-transfer (LET) theory, computation for decaying turbulence 319—328
Local energy-transfer (LET) theory, equation for the pair correlation 305
Local energy-transfer (LET) theory, generalized covariance equation 305
Local energy-transfer (LET) theory, response equation for the propagator 306
Local energy-transfer (LET) theory, statistical form of the basic hypothesis 302—303
Local energy-transfer (LET) theory, velocity-field propagator 301
Log-normal distribution of the dissipation rate 105
Log-normal distribution of the dissipation rate, comparison with experimental results 106—107
Logan, S.E. 505 506
Logarithmic mean velocity distribution 16—17
Lomas, C.G. 91
Love, M.D. 389
Lu, S.S. 419 420 431
Lucero, J.A. 490
Luchik, T.S. 419 510
Luchini, P. 126
Lumley, J.L. 27 83 86 98 106 131 132 133 135 138 377 418 428 444 448 455 456 490 501 502 503 521
Lundgren, T.S. 159
Ma, S.K. 350
Maeguchi, K. 506
Malhotra, R.C. 141 513
Mandelbrot, B. 107 109 351
Manley, O.P. 330
March, N.H. 185 186 205 206
Markatos, N.C. 128 130
Markov process 162
Markov process, Brownian motion 162 163—165
Markov process, Chapman-Kolmogorov equation 162—163
Markov process, Fokker-Planck equation 163—164
Markov process, Langevin equation 163—164
Markov process, master equation 162—163
Markov process, relative diffusion 451
Markov process, scalar transport 475
Martin, P.C. 223 290 328 351 363
Masiello, P.J. 106
Mason, P.J. 389
Master equation see “Markov process”
Mathews, J. 190 249
Mathieu, J. 335
Matjukhov, A.P. 133
Mattuck, R.D. 185 186 205
Mautner, T.S. 416
Maxey, M.R. 456
Maximal randomness (in DIA) 338
Maxwell model see “Non-Newtonian fluids”
Mayer, J.E. 200 204 205 223
Mayer, M.G. 223
Mazenko, G.F. 350
McComb, W.D. 134 141 290 291 292 293 294 295 297 298 299 300 302 311 313 316 319 320 324 327 335 336 337 342 343 352 353 377 392 398 399 401 426 470 471 486 487 488 490 500 502 503 506 508 509 510 511 512 513 515 516 517 519 520 521
McConaghy, G.A. 518
McConnell, S. 106
McKee, J.K. 403
McMillan, O.J. 388
McMurray, J.T. 423
Mean field theory 347 349
Mean motion effects see “Turbulent diffusion of particles”
Mean velocity, 'law of the wall' 16
Mean velocity, axial and transverse distributions in a free jet 31—32
Mean velocity, ensemble average 39
Mean velocity, equations for 7—8
Mean velocity, experimental distributions in duct flows 25—27
Mean velocity, linear law 17
Mean velocity, mean (bulk) 4
Mean velocity, time averaged 5—6
Mean velocity, universal distribution near a solid surface 16—17
Mehta, R.D. 409
Melinand, J.P. 95
Melling, A. 98
Mellor, G.L. 128
Merrill, E.W. 135 138 498 499 500 509
Metcalfe, R.W. 386 397 428
Metzner, A.B. 135 141 497 498 500 513 514
Metzner, A.P. 136 497
Mewis, J. 497
Mickley, H.S. 135 138 139 507
Microscale of time Eulerian differential scale 54
Middleman, S. 519 520
Migrenko, G.S. 133
Mih, W. 512 513 514
Mixing-length model 20—22
| Mixing-length model, applied to a free jet 22—24
Mixing-length model, relevance of the bursting process 431
Mixing-length, free jet 23
Mixing-length, wall region 21
Mizushina, T. 505 506 509 518
Mjolsness, R.C. 330
Mockros, L.F. 456
Mode coupling 146 247
Modified EFP theories 290—300 see
Modified EFP theories, local energy-transfer equations 298—300
Modified EFP theories, maximal entropy principle 290—294
Modified EFP theories, response function determined by local energy balance 294—298
Moeng, C-H. 387
Moilliet, A. 104 269
Moin, P. 118 124 386 387 388 426 431
Moiseev, S.S. 142 325
Molecular dynamics simulation 402
Moller, K. 513
Mollo-Christensen, E.L. 138
Moments (of the velocity field), many-point, many-time hierarchy 41
Moments (of the velocity field), relation to cumulants 529—530
Moments (of the velocity field), single-point, single-time 8
Moments (of the velocity field), two-point, two-time 9
Momentum integral equation (Von Karman form) 17
Monin, A.S. 55 106 176 178 182 368 436 441 452
Montgomery, D. 160
Monti, R. 518
Moore, D.W. 428
Moore, E.F. 428
Morfey, C.L. 402
Mori, H. 109
Morikawa, Y. 490
Morton, J.B. 337
Moser, R. 118 386 431
Mourn, J.N. 410
Moyls, A.L. 519
Mumford, J.C. 410
Murakami, Y. 400
Mysels, K.J. 133
Nadolink, R.H. 500
Nagazono, H. 497
Nakano, T. 277 298 300 307 331
Nallasamy, M. 128
Narashima, R. 419
Navier-Stokes equation 3
Navier-Stokes equation, as used for direct numerical simulation 114
Navier-Stokes equation, in filtered form for large-eddy simulation 122
Navier-Stokes equation, solenoidal (divergenceless) form 36 39
Navier-Stokes equation, solenoidal form in wavenumber space 55—56
Near-Markovian model closures see also “Markov process”
Near-Markovian model closures, quasi-normal Markovian approximations 307—308
Near-Markovian model closures, test-field model 309
Near-Markovian model closures, test-field model, computation for decaying turbulence 317—329
Near-Markovian model closures, test-field model, prediction of the Kolmogorov constant 318
Nelkin, M. 107
Nelson, D.R. 350 357
Newton's law (as a definition of the coefficient of viscosity) 3
Ni, C.C. 501
Nikuradse, J. 24 25 26 27
Non-linear terms, conservative nature of 66 526
Non-linear terms, for second-order closure approximation 236
Non-Newtonian fluids 494
Non-Newtonian fluids, apparent viscosity 495
Non-Newtonian fluids, early turbulence 500—501
Non-Newtonian fluids, effect on isotropic turbulence, experimental assessment 503—505
Non-Newtonian fluids, effect on isotropic turbulence, theoretical assessment 501 -3
Non-Newtonian fluids, friction factors 500
Non-Newtonian fluids, power-law fluid 495
Non-Newtonian fluids, rheological models 496
Non-Newtonian fluids, shear thinning 495
Non-Newtonian fluids, structural turbulence 500—501
Non-Newtonian fluids, viscoelastic 495
Norman, B. 513
Novikov, E.A. 107 244
Numerical simulation of turbulence see “Full simulation” “Large-eddy
O'Brien, E.E. 81 491
Obukhov, A.M. 105 107 451 474
Obukhov-Corrsin constant 474
Ogura, Y. 81 312
Oldroyd model see “Non-Newtonian fluids”
Oldroyd, J.G. 132
Oliver, D.R. 497
Onsager, L. 347
Orszag, S.A. 60 65 74 81 114 116 117 118 307 308 318 319 326 379 382 383 384 385 386 403 423
Ortiz, M.J. 337
Otnes, R.K. 98 99
Pair correlation (of velocities) zero-order 213
Pao's spectral correlation for isotropic turbulence 84
Pao, Y-h. 84 385 386
Parker, J. 512 513 514
Pasquill, F. 445 447
Passive scalar convection 460 see “Diffusion “Scalar
Patankar, S.V. 125
Patel, V.C. 128
Paterson, R.W. 136 138 501
Patterson, G.K. 140
Patterson, G.S. 117 118 318 319 326 382 383 384 385 448 456
Peeters, M.F. 414
Perry, A.E. 91 410 414 416 421 423
Peskin, R.L. 448 449
Pesme, D. 337
Peyret, R. 112
Phan-Thien, N. 329
Phase space 154
Phase space, velocity in 156
Philip, J.R. 447
Phillips, O.M. 457
Phythian, R. 225 264 265 309
Picart, A. 456
Pirih, R.J. 515
Pitot tube 89
Poisson equation, for the electron gas 202
Poisson equation, for the pressure in a fluid 37
Pond.S. 117
Pope, S.B. 130
Popper.J. 490
Poreh, M. 519
Pouquet, A. 337
Prahm, L.P. 467
Prandtl number see also “Heat and mass transfer”
Prandtl number, eddy (turbulent) form 464
Prandtl number, molecular form 462
Prandtl, L. 12 19 20 21
Prandtl-Karman empirical formula for flow through ducts 19 see
Prigogine, I. 143 160
Probability distribution functions 155
Probability distribution functions, ensemble for 155
Probability distribution functions, N-particle 156
Probability distribution functions, non-Gaussian nature for turbulence 165—166
Probability distribution functions, non-Gaussian nature for turbulence, in the inviscid case 167
Probability distribution functions, one-point 155
Probability distribution functions, two-point 155
Procaccia, I. 452
Production of turbulence 28
Production of turbulence, experimental value in duct flows 30—31
Propagators, and time evolution 184—185
Propagators, equivalence to Green function 186
Propagators, Fourier-transform 208
Propagators, renormalized, for the Navier-Stokes equation 217—228
Propagators, zero-order, for the Navier-Stokes equation 207
Proper orthogonal decomposition 430
Proudman, I. 78 338
Pruitt.G.T. 139
Pseudo-spectral method 116
Purtell, L.P. 27
Quarini, G.L. 392 395 397
Quarmby, A. 470
Quasi-normality hypothesis 78
Quasi-normality hypothesis, equation for the spectral density 81
Quasi-normality hypothesis, failure due to evolution of negative spectra 81
|
|
|
Реклама |
|
|
|