Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
McComb W. D. — The Physics of Fluid Turbulence
McComb W. D. — The Physics of Fluid Turbulence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Physics of Fluid Turbulence

Автор: McComb W. D.

Аннотация:

This book provides an in-depth look at fluid turbulence: the archetypal non-linear, non-equilibrium problem of statistical physics which has witnessed significant progress in recent years, facilitated by advances in laser anemometry, computer technology, and theoretical methods from quantum physics. A fully integrated work, The Physics of Fluid Turbulence approaches its subject as a universal phenomenon with a universal behavior. It includes a concise summary of the theory and practice of turbulence science up to 1960, followed by a detailed analysis of more recent developments in this area, including a rigorous formulation of the turbulence problem as an example of a non-equilibrium statistical system with strong coupling, along with the application of renormalized perturbation theory. Designed for those new to the subject, the book will also be useful to those who are familiar with the study of turbulence but have not yet approached the subject utilizing the theoretical methods from quantum physics that are covered here.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 572

Добавлена в каталог: 30.05.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lagrangian-history direct-interaction (LHDI) theories, abridged LHDI theory      286—288
Lagrangian-history direct-interaction (LHDI) theories, compatibility with the Kolmogorov inertial-range spectrum      286
Lagrangian-history direct-interaction (LHDI) theories, computation for decaying turbulence      324—328
Lagrangian-history direct-interaction (LHDI) theories, DIA adapted to Lagrangian-history coordinates      282—286
Lagrangian-history direct-interaction (LHDI) theories, Lagrangian coordinates      278
Lagrangian-history direct-interaction (LHDI) theories, Lagrangian-history formulation of the equations of motion      278—281
Lagrangian-history direct-interaction (LHDI) theories, Lagrangian-history formulation of the equations of motion, generalized velocity, solenoidal part and curl-free part      279
Lagrangian-history direct-interaction (LHDI) theories, random Galilean invariance      285—286 325
Lagrangian-history direct-interaction (LHDI) theories, statistical formulation: moments of the generalized velocity field      281—282
Lagrangian-history direct-interaction (LHDI) theories, strain-based LHDI and ALHDI      284—290
Lallemand, P.      403
Lalor, M.J.      490
Landahl, M.T.      430 431 498
Landau, L.D.      3 104 113 114
Langevin equation      see also “Markov process”
Langevin equation, generalized to turbulence      309 351
Large eddy simulation (LES)      118 381 see
Large eddy simulation (LES), Heisenberg-type effective viscosity      119
Large eddy simulation (LES), in configuration space      120
Large eddy simulation (LES), in wavenumber space      118—120 390—391
Large eddy simulation (LES), Leonard stress      122
Large eddy simulation (LES), resolved scales      121
Large eddy simulation (LES), shear flows      387—388
Large eddy simulation (LES), Smagorinsky model      122
Large eddy simulation (LES), subgrid scales      121
Larsen, P.S.      167 490
Laser anemometer      92
Laser anemometer, differential Doppler mode      95
Laser anemometer, frequency shifting      95
Laser anemometer, optical background      545—549
Lattice gas models      402
Lau, J.C.      95
Laufer, J.      24 27 120
Launder, B.E.      127 128 130 336
Lauterborn, W.      98
Lawn, C.J.      24 29 85 86
Leal;L.G.      126
Lee, C.O.      506
Lee, J.      167
Lee, L.L.      206 220 221 223
Lee, T.D.      166
Lee, W.K.      141 497 517
Leith, C.E.      309 337
Length scales      see “Taylor microscale” “Integral” “Length “Kolmogorov “Inner-layer “Boundary
Leonard, A.      120 122 123 124 402 427
Leonard, A.D.      491
Leorat, J.      337
Lesieur, M.      328 392 396 397
Leslie, D.C.      60 251 277 283 335 336 389 392 395 397
Levich, E.      351
Lewis, M.B.      160
Lewis, R.M.      167 169 171 172 176
Libby, J.F.      412 413
Libby, P.A.      491
Lifshitz, E.M.      3 104 113 114
Lightfoot, E.N.      461
Lilly, D.K.      123
Lim, T.T.      414
Lin, C-H.      491
Lin, C.C.      433 451
Lin, J-T.      84
Liouville equation, for an inviscid fluid      166
Liouville equation, for turbulence      242 258 264
Liouville equation, in statistical mechanics      157
Liouville equation, time-dependent for turbulence      263
Lipowsky, R.      290
Little, R.C.      134 501
Local energy-transfer (LET) theory      300—307
Local energy-transfer (LET) theory, application to the computation of total energy decay in, 3D turbulence      337
Local energy-transfer (LET) theory, comparison with DIA      306—307
Local energy-transfer (LET) theory, computation for decaying turbulence      319—328
Local energy-transfer (LET) theory, equation for the pair correlation      305
Local energy-transfer (LET) theory, generalized covariance equation      305
Local energy-transfer (LET) theory, response equation for the propagator      306
Local energy-transfer (LET) theory, statistical form of the basic hypothesis      302—303
Local energy-transfer (LET) theory, velocity-field propagator      301
Log-normal distribution of the dissipation rate      105
Log-normal distribution of the dissipation rate, comparison with experimental results      106—107
Logan, S.E.      505 506
Logarithmic mean velocity distribution      16—17
Lomas, C.G.      91
Love, M.D.      389
Lu, S.S.      419 420 431
Lucero, J.A.      490
Luchik, T.S.      419 510
Luchini, P.      126
Lumley, J.L.      27 83 86 98 106 131 132 133 135 138 377 418 428 444 448 455 456 490 501 502 503 521
Lundgren, T.S.      159
Ma, S.K.      350
Maeguchi, K.      506
Malhotra, R.C.      141 513
Mandelbrot, B.      107 109 351
Manley, O.P.      330
March, N.H.      185 186 205 206
Markatos, N.C.      128 130
Markov process      162
Markov process, Brownian motion      162 163—165
Markov process, Chapman-Kolmogorov equation      162—163
Markov process, Fokker-Planck equation      163—164
Markov process, Langevin equation      163—164
Markov process, master equation      162—163
Markov process, relative diffusion      451
Markov process, scalar transport      475
Martin, P.C.      223 290 328 351 363
Masiello, P.J.      106
Mason, P.J.      389
Master equation      see “Markov process”
Mathews, J.      190 249
Mathieu, J.      335
Matjukhov, A.P.      133
Mattuck, R.D.      185 186 205
Mautner, T.S.      416
Maxey, M.R.      456
Maximal randomness (in DIA)      338
Maxwell model      see “Non-Newtonian fluids”
Mayer, J.E.      200 204 205 223
Mayer, M.G.      223
Mazenko, G.F.      350
McComb, W.D.      134 141 290 291 292 293 294 295 297 298 299 300 302 311 313 316 319 320 324 327 335 336 337 342 343 352 353 377 392 398 399 401 426 470 471 486 487 488 490 500 502 503 506 508 509 510 511 512 513 515 516 517 519 520 521
McConaghy, G.A.      518
McConnell, S.      106
McKee, J.K.      403
McMillan, O.J.      388
McMurray, J.T.      423
Mean field theory      347 349
Mean motion effects      see “Turbulent diffusion of particles”
Mean velocity, 'law of the wall'      16
Mean velocity, axial and transverse distributions in a free jet      31—32
Mean velocity, ensemble average      39
Mean velocity, equations for      7—8
Mean velocity, experimental distributions in duct flows      25—27
Mean velocity, linear law      17
Mean velocity, mean (bulk)      4
Mean velocity, time averaged      5—6
Mean velocity, universal distribution near a solid surface      16—17
Mehta, R.D.      409
Melinand, J.P.      95
Melling, A.      98
Mellor, G.L.      128
Merrill, E.W.      135 138 498 499 500 509
Metcalfe, R.W.      386 397 428
Metzner, A.B.      135 141 497 498 500 513 514
Metzner, A.P.      136 497
Mewis, J.      497
Mickley, H.S.      135 138 139 507
Microscale of time Eulerian differential scale      54
Middleman, S.      519 520
Migrenko, G.S.      133
Mih, W.      512 513 514
Mixing-length model      20—22
Mixing-length model, applied to a free jet      22—24
Mixing-length model, relevance of the bursting process      431
Mixing-length, free jet      23
Mixing-length, wall region      21
Mizushina, T.      505 506 509 518
Mjolsness, R.C.      330
Mockros, L.F.      456
Mode coupling      146 247
Modified EFP theories      290—300 see
Modified EFP theories, local energy-transfer equations      298—300
Modified EFP theories, maximal entropy principle      290—294
Modified EFP theories, response function determined by local energy balance      294—298
Moeng, C-H.      387
Moilliet, A.      104 269
Moin, P.      118 124 386 387 388 426 431
Moiseev, S.S.      142 325
Molecular dynamics simulation      402
Moller, K.      513
Mollo-Christensen, E.L.      138
Moments (of the velocity field), many-point, many-time hierarchy      41
Moments (of the velocity field), relation to cumulants      529—530
Moments (of the velocity field), single-point, single-time      8
Moments (of the velocity field), two-point, two-time      9
Momentum integral equation (Von Karman form)      17
Monin, A.S.      55 106 176 178 182 368 436 441 452
Montgomery, D.      160
Monti, R.      518
Moore, D.W.      428
Moore, E.F.      428
Morfey, C.L.      402
Mori, H.      109
Morikawa, Y.      490
Morton, J.B.      337
Moser, R.      118 386 431
Mourn, J.N.      410
Moyls, A.L.      519
Mumford, J.C.      410
Murakami, Y.      400
Mysels, K.J.      133
Nadolink, R.H.      500
Nagazono, H.      497
Nakano, T.      277 298 300 307 331
Nallasamy, M.      128
Narashima, R.      419
Navier-Stokes equation      3
Navier-Stokes equation, as used for direct numerical simulation      114
Navier-Stokes equation, in filtered form for large-eddy simulation      122
Navier-Stokes equation, solenoidal (divergenceless) form      36 39
Navier-Stokes equation, solenoidal form in wavenumber space      55—56
Near-Markovian model closures      see also “Markov process”
Near-Markovian model closures, quasi-normal Markovian approximations      307—308
Near-Markovian model closures, test-field model      309
Near-Markovian model closures, test-field model, computation for decaying turbulence      317—329
Near-Markovian model closures, test-field model, prediction of the Kolmogorov constant      318
Nelkin, M.      107
Nelson, D.R.      350 357
Newton's law (as a definition of the coefficient of viscosity)      3
Ni, C.C.      501
Nikuradse, J.      24 25 26 27
Non-linear terms, conservative nature of      66 526
Non-linear terms, for second-order closure approximation      236
Non-Newtonian fluids      494
Non-Newtonian fluids, apparent viscosity      495
Non-Newtonian fluids, early turbulence      500—501
Non-Newtonian fluids, effect on isotropic turbulence, experimental assessment      503—505
Non-Newtonian fluids, effect on isotropic turbulence, theoretical assessment      501 -3
Non-Newtonian fluids, friction factors      500
Non-Newtonian fluids, power-law fluid      495
Non-Newtonian fluids, rheological models      496
Non-Newtonian fluids, shear thinning      495
Non-Newtonian fluids, structural turbulence      500—501
Non-Newtonian fluids, viscoelastic      495
Norman, B.      513
Novikov, E.A.      107 244
Numerical simulation of turbulence      see “Full simulation” “Large-eddy
O'Brien, E.E.      81 491
Obukhov, A.M.      105 107 451 474
Obukhov-Corrsin constant      474
Ogura, Y.      81 312
Oldroyd model      see “Non-Newtonian fluids”
Oldroyd, J.G.      132
Oliver, D.R.      497
Onsager, L.      347
Orszag, S.A.      60 65 74 81 114 116 117 118 307 308 318 319 326 379 382 383 384 385 386 403 423
Ortiz, M.J.      337
Otnes, R.K.      98 99
Pair correlation (of velocities) zero-order      213
Pao's spectral correlation for isotropic turbulence      84
Pao, Y-h.      84 385 386
Parker, J.      512 513 514
Pasquill, F.      445 447
Passive scalar convection      460 see “Diffusion “Scalar
Patankar, S.V.      125
Patel, V.C.      128
Paterson, R.W.      136 138 501
Patterson, G.K.      140
Patterson, G.S.      117 118 318 319 326 382 383 384 385 448 456
Peeters, M.F.      414
Perry, A.E.      91 410 414 416 421 423
Peskin, R.L.      448 449
Pesme, D.      337
Peyret, R.      112
Phan-Thien, N.      329
Phase space      154
Phase space, velocity in      156
Philip, J.R.      447
Phillips, O.M.      457
Phythian, R.      225 264 265 309
Picart, A.      456
Pirih, R.J.      515
Pitot tube      89
Poisson equation, for the electron gas      202
Poisson equation, for the pressure in a fluid      37
Pond.S.      117
Pope, S.B.      130
Popper.J.      490
Poreh, M.      519
Pouquet, A.      337
Prahm, L.P.      467
Prandtl number      see also “Heat and mass transfer”
Prandtl number, eddy (turbulent) form      464
Prandtl number, molecular form      462
Prandtl, L.      12 19 20 21
Prandtl-Karman empirical formula for flow through ducts      19 see
Prigogine, I.      143 160
Probability distribution functions      155
Probability distribution functions, ensemble for      155
Probability distribution functions, N-particle      156
Probability distribution functions, non-Gaussian nature for turbulence      165—166
Probability distribution functions, non-Gaussian nature for turbulence, in the inviscid case      167
Probability distribution functions, one-point      155
Probability distribution functions, two-point      155
Procaccia, I.      452
Production of turbulence      28
Production of turbulence, experimental value in duct flows      30—31
Propagators, and time evolution      184—185
Propagators, equivalence to Green function      186
Propagators, Fourier-transform      208
Propagators, renormalized, for the Navier-Stokes equation      217—228
Propagators, zero-order, for the Navier-Stokes equation      207
Proper orthogonal decomposition      430
Proudman, I.      78 338
Pruitt.G.T.      139
Pseudo-spectral method      116
Purtell, L.P.      27
Quarini, G.L.      392 395 397
Quarmby, A.      470
Quasi-normality hypothesis      78
Quasi-normality hypothesis, equation for the spectral density      81
Quasi-normality hypothesis, failure due to evolution of negative spectra      81
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте