| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | McComb W. D. — The Physics of Fluid Turbulence |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Lagrangian-history direct-interaction (LHDI) theories, abridged LHDI theory      286—288 Lagrangian-history direct-interaction (LHDI) theories, compatibility with the Kolmogorov inertial-range spectrum      286
 Lagrangian-history direct-interaction (LHDI) theories, computation for decaying turbulence      324—328
 Lagrangian-history direct-interaction (LHDI) theories, DIA adapted to Lagrangian-history coordinates      282—286
 Lagrangian-history direct-interaction (LHDI) theories, Lagrangian coordinates      278
 Lagrangian-history direct-interaction (LHDI) theories, Lagrangian-history formulation of the equations of motion      278—281
 Lagrangian-history direct-interaction (LHDI) theories, Lagrangian-history formulation of the equations of motion, generalized velocity, solenoidal part and curl-free part      279
 Lagrangian-history direct-interaction (LHDI) theories, random Galilean invariance      285—286 325
 Lagrangian-history direct-interaction (LHDI) theories, statistical formulation: moments of the generalized velocity field      281—282
 Lagrangian-history direct-interaction (LHDI) theories, strain-based LHDI and ALHDI      284—290
 Lallemand, P.      403
 Lalor, M.J.      490
 Landahl, M.T.      430 431 498
 Landau, L.D.      3 104 113 114
 Langevin equation      see also “Markov process”
 Langevin equation, generalized to turbulence      309 351
 Large eddy simulation (LES)      118 381 see
 Large eddy simulation (LES), Heisenberg-type effective viscosity      119
 Large eddy simulation (LES), in configuration space      120
 Large eddy simulation (LES), in wavenumber space      118—120 390—391
 Large eddy simulation (LES), Leonard stress      122
 Large eddy simulation (LES), resolved scales      121
 Large eddy simulation (LES), shear flows      387—388
 Large eddy simulation (LES), Smagorinsky model      122
 Large eddy simulation (LES), subgrid scales      121
 Larsen, P.S.      167 490
 Laser anemometer      92
 Laser anemometer, differential Doppler mode      95
 Laser anemometer, frequency shifting      95
 Laser anemometer, optical background      545—549
 Lattice gas models      402
 Lau, J.C.      95
 Laufer, J.      24 27 120
 Launder, B.E.      127 128 130 336
 Lauterborn, W.      98
 Lawn, C.J.      24 29 85 86
 Leal;L.G.      126
 Lee, C.O.      506
 Lee, J.      167
 Lee, L.L.      206 220 221 223
 Lee, T.D.      166
 Lee, W.K.      141 497 517
 Leith, C.E.      309 337
 Length scales      see “Taylor microscale” “Integral” “Length “Kolmogorov “Inner-layer “Boundary
 Leonard, A.      120 122 123 124 402 427
 Leonard, A.D.      491
 Leorat, J.      337
 Lesieur, M.      328 392 396 397
 Leslie, D.C.      60 251 277 283 335 336 389 392 395 397
 Levich, E.      351
 Lewis, M.B.      160
 Lewis, R.M.      167 169 171 172 176
 Libby, J.F.      412 413
 Libby, P.A.      491
 Lifshitz, E.M.      3 104 113 114
 Lightfoot, E.N.      461
 Lilly, D.K.      123
 Lim, T.T.      414
 Lin, C-H.      491
 Lin, C.C.      433 451
 Lin, J-T.      84
 Liouville equation, for an inviscid fluid      166
 Liouville equation, for turbulence      242 258 264
 Liouville equation, in statistical mechanics      157
 Liouville equation, time-dependent for turbulence      263
 Lipowsky, R.      290
 Little, R.C.      134 501
 Local energy-transfer (LET) theory      300—307
 Local energy-transfer (LET) theory, application to the computation of total energy decay in, 3D turbulence      337
 Local energy-transfer (LET) theory, comparison with DIA      306—307
 Local energy-transfer (LET) theory, computation for decaying turbulence      319—328
 Local energy-transfer (LET) theory, equation for the pair correlation      305
 Local energy-transfer (LET) theory, generalized covariance equation      305
 Local energy-transfer (LET) theory, response equation for the propagator      306
 Local energy-transfer (LET) theory, statistical form of the basic hypothesis      302—303
 Local energy-transfer (LET) theory, velocity-field propagator      301
 Log-normal distribution of the dissipation rate      105
 Log-normal distribution of the dissipation rate, comparison with experimental results      106—107
 Logan, S.E.      505 506
 Logarithmic mean velocity distribution      16—17
 Lomas, C.G.      91
 Love, M.D.      389
 Lu, S.S.      419 420 431
 Lucero, J.A.      490
 Luchik, T.S.      419 510
 Luchini, P.      126
 Lumley, J.L.      27 83 86 98 106 131 132 133 135 138 377 418 428 444 448 455 456 490 501 502 503 521
 Lundgren, T.S.      159
 Ma, S.K.      350
 Maeguchi, K.      506
 Malhotra, R.C.      141 513
 Mandelbrot, B.      107 109 351
 Manley, O.P.      330
 March, N.H.      185 186 205 206
 Markatos, N.C.      128 130
 Markov process      162
 Markov process, Brownian motion      162 163—165
 Markov process, Chapman-Kolmogorov equation      162—163
 Markov process, Fokker-Planck equation      163—164
 Markov process, Langevin equation      163—164
 Markov process, master equation      162—163
 Markov process, relative diffusion      451
 Markov process, scalar transport      475
 Martin, P.C.      223 290 328 351 363
 Masiello, P.J.      106
 Mason, P.J.      389
 Master equation      see “Markov process”
 Mathews, J.      190 249
 Mathieu, J.      335
 Matjukhov, A.P.      133
 Mattuck, R.D.      185 186 205
 Mautner, T.S.      416
 Maxey, M.R.      456
 Maximal randomness (in DIA)      338
 Maxwell model      see “Non-Newtonian fluids”
 Mayer, J.E.      200 204 205 223
 Mayer, M.G.      223
 Mazenko, G.F.      350
 McComb, W.D.      134 141 290 291 292 293 294 295 297 298 299 300 302 311 313 316 319 320 324 327 335 336 337 342 343 352 353 377 392 398 399 401 426 470 471 486 487 488 490 500 502 503 506 508 509 510 511 512 513 515 516 517 519 520 521
 McConaghy, G.A.      518
 McConnell, S.      106
 McKee, J.K.      403
 McMillan, O.J.      388
 McMurray, J.T.      423
 Mean field theory      347 349
 Mean motion effects      see “Turbulent diffusion of particles”
 Mean velocity, 'law of the wall'      16
 Mean velocity, axial and transverse distributions in a free jet      31—32
 Mean velocity, ensemble average      39
 Mean velocity, equations for      7—8
 Mean velocity, experimental distributions in duct flows      25—27
 Mean velocity, linear law      17
 Mean velocity, mean (bulk)      4
 Mean velocity, time averaged      5—6
 Mean velocity, universal distribution near a solid surface      16—17
 Mehta, R.D.      409
 Melinand, J.P.      95
 Melling, A.      98
 Mellor, G.L.      128
 Merrill, E.W.      135 138 498 499 500 509
 Metcalfe, R.W.      386 397 428
 Metzner, A.B.      135 141 497 498 500 513 514
 Metzner, A.P.      136 497
 Mewis, J.      497
 Mickley, H.S.      135 138 139 507
 Microscale of time Eulerian differential scale      54
 Middleman, S.      519 520
 Migrenko, G.S.      133
 Mih, W.      512 513 514
 Mixing-length model      20—22
 
 | Mixing-length model, applied to a free jet      22—24 Mixing-length model, relevance of the bursting process      431
 Mixing-length, free jet      23
 Mixing-length, wall region      21
 Mizushina, T.      505 506 509 518
 Mjolsness, R.C.      330
 Mockros, L.F.      456
 Mode coupling      146 247
 Modified EFP theories      290—300 see
 Modified EFP theories, local energy-transfer equations      298—300
 Modified EFP theories, maximal entropy principle      290—294
 Modified EFP theories, response function determined by local energy balance      294—298
 Moeng, C-H.      387
 Moilliet, A.      104 269
 Moin, P.      118 124 386 387 388 426 431
 Moiseev, S.S.      142 325
 Molecular dynamics simulation      402
 Moller, K.      513
 Mollo-Christensen, E.L.      138
 Moments (of the velocity field), many-point, many-time hierarchy      41
 Moments (of the velocity field), relation to cumulants      529—530
 Moments (of the velocity field), single-point, single-time      8
 Moments (of the velocity field), two-point, two-time      9
 Momentum integral equation (Von Karman form)      17
 Monin, A.S.      55 106 176 178 182 368 436 441 452
 Montgomery, D.      160
 Monti, R.      518
 Moore, D.W.      428
 Moore, E.F.      428
 Morfey, C.L.      402
 Mori, H.      109
 Morikawa, Y.      490
 Morton, J.B.      337
 Moser, R.      118 386 431
 Mourn, J.N.      410
 Moyls, A.L.      519
 Mumford, J.C.      410
 Murakami, Y.      400
 Mysels, K.J.      133
 Nadolink, R.H.      500
 Nagazono, H.      497
 Nakano, T.      277 298 300 307 331
 Nallasamy, M.      128
 Narashima, R.      419
 Navier-Stokes equation      3
 Navier-Stokes equation, as used for direct numerical simulation      114
 Navier-Stokes equation, in filtered form for large-eddy simulation      122
 Navier-Stokes equation, solenoidal (divergenceless) form      36 39
 Navier-Stokes equation, solenoidal form in wavenumber space      55—56
 Near-Markovian model closures      see also “Markov process”
 Near-Markovian model closures, quasi-normal Markovian approximations      307—308
 Near-Markovian model closures, test-field model      309
 Near-Markovian model closures, test-field model, computation for decaying turbulence      317—329
 Near-Markovian model closures, test-field model, prediction of the Kolmogorov constant      318
 Nelkin, M.      107
 Nelson, D.R.      350 357
 Newton's law (as a definition of the coefficient of viscosity)      3
 Ni, C.C.      501
 Nikuradse, J.      24 25 26 27
 Non-linear terms, conservative nature of      66 526
 Non-linear terms, for second-order closure approximation      236
 Non-Newtonian fluids      494
 Non-Newtonian fluids, apparent viscosity      495
 Non-Newtonian fluids, early turbulence      500—501
 Non-Newtonian fluids, effect on isotropic turbulence, experimental assessment      503—505
 Non-Newtonian fluids, effect on isotropic turbulence, theoretical assessment      501 -3
 Non-Newtonian fluids, friction factors      500
 Non-Newtonian fluids, power-law fluid      495
 Non-Newtonian fluids, rheological models      496
 Non-Newtonian fluids, shear thinning      495
 Non-Newtonian fluids, structural turbulence      500—501
 Non-Newtonian fluids, viscoelastic      495
 Norman, B.      513
 Novikov, E.A.      107 244
 Numerical simulation of turbulence      see “Full simulation” “Large-eddy
 O'Brien, E.E.      81 491
 Obukhov, A.M.      105 107 451 474
 Obukhov-Corrsin constant      474
 Ogura, Y.      81 312
 Oldroyd model      see “Non-Newtonian fluids”
 Oldroyd, J.G.      132
 Oliver, D.R.      497
 Onsager, L.      347
 Orszag, S.A.      60 65 74 81 114 116 117 118 307 308 318 319 326 379 382 383 384 385 386 403 423
 Ortiz, M.J.      337
 Otnes, R.K.      98 99
 Pair correlation (of velocities) zero-order      213
 Pao's spectral correlation for isotropic turbulence      84
 Pao, Y-h.      84 385 386
 Parker, J.      512 513 514
 Pasquill, F.      445 447
 Passive scalar convection      460 see “Diffusion “Scalar
 Patankar, S.V.      125
 Patel, V.C.      128
 Paterson, R.W.      136 138 501
 Patterson, G.K.      140
 Patterson, G.S.      117 118 318 319 326 382 383 384 385 448 456
 Peeters, M.F.      414
 Perry, A.E.      91 410 414 416 421 423
 Peskin, R.L.      448 449
 Pesme, D.      337
 Peyret, R.      112
 Phan-Thien, N.      329
 Phase space      154
 Phase space, velocity in      156
 Philip, J.R.      447
 Phillips, O.M.      457
 Phythian, R.      225 264 265 309
 Picart, A.      456
 Pirih, R.J.      515
 Pitot tube      89
 Poisson equation, for the electron gas      202
 Poisson equation, for the pressure in a fluid      37
 Pond.S.      117
 Pope, S.B.      130
 Popper.J.      490
 Poreh, M.      519
 Pouquet, A.      337
 Prahm, L.P.      467
 Prandtl number      see also “Heat and mass transfer”
 Prandtl number, eddy (turbulent) form      464
 Prandtl number, molecular form      462
 Prandtl, L.      12 19 20 21
 Prandtl-Karman empirical formula for flow through ducts      19 see
 Prigogine, I.      143 160
 Probability distribution functions      155
 Probability distribution functions, ensemble for      155
 Probability distribution functions, N-particle      156
 Probability distribution functions, non-Gaussian nature for turbulence      165—166
 Probability distribution functions, non-Gaussian nature for turbulence, in the inviscid case      167
 Probability distribution functions, one-point      155
 Probability distribution functions, two-point      155
 Procaccia, I.      452
 Production of turbulence      28
 Production of turbulence, experimental value in duct flows      30—31
 Propagators, and time evolution      184—185
 Propagators, equivalence to Green function      186
 Propagators, Fourier-transform      208
 Propagators, renormalized, for the Navier-Stokes equation      217—228
 Propagators, zero-order, for the Navier-Stokes equation      207
 Proper orthogonal decomposition      430
 Proudman, I.      78 338
 Pruitt.G.T.      139
 Pseudo-spectral method      116
 Purtell, L.P.      27
 Quarini, G.L.      392 395 397
 Quarmby, A.      470
 Quasi-normality hypothesis      78
 Quasi-normality hypothesis, equation for the spectral density      81
 Quasi-normality hypothesis, failure due to evolution of negative spectra      81
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |