Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
McComb W. D. — The Physics of Fluid Turbulence
McComb W. D. — The Physics of Fluid Turbulence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Physics of Fluid Turbulence

Автор: McComb W. D.

Аннотация:

This book provides an in-depth look at fluid turbulence: the archetypal non-linear, non-equilibrium problem of statistical physics which has witnessed significant progress in recent years, facilitated by advances in laser anemometry, computer technology, and theoretical methods from quantum physics. A fully integrated work, The Physics of Fluid Turbulence approaches its subject as a universal phenomenon with a universal behavior. It includes a concise summary of the theory and practice of turbulence science up to 1960, followed by a detailed analysis of more recent developments in this area, including a rigorous formulation of the turbulence problem as an example of a non-equilibrium statistical system with strong coupling, along with the application of renormalized perturbation theory. Designed for those new to the subject, the book will also be useful to those who are familiar with the study of turbulence but have not yet approached the subject utilizing the theoretical methods from quantum physics that are covered here.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 572

Добавлена в каталог: 30.05.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Quasi-particle approach      141 143
Quasi-stationarity, of decaying turbulence      314—325
Quian, J.      294
Rabie, L.H.      134 470 506 508 509 510 511 519 520
Radin, I.      140 521
Raithby, G.D.      125
Rajagopalan, S.      62 410 425
Ramaprian, B.R.      24 31 33
Ramond, P.      378
Ramu, K.L.V.      519
Rao, P.V.      133 419
Rapaport, D.C.      402
Rate of strain tensor      496
Reduced probability distribution functions      158
Reduced probability distribution functions, distribution vector      159
Reece, G.J.      128
Reed, J.C.      498
Reeks, M.W.      483
Reichl, L.E.      3 163 165 182 205 206 240 361
Reid, W.H.      78 433
Reischman, M.M.      501 505 506 507 508 515
Relative diffusion      449—452
Relative diffusion, extension to three dimensions      452
Relative diffusion, Richardson's law      451
Renormalization      141 143
Renormalization group (RG)      148—149
Renormalization group (RG), and upper critical dimension      349
Renormalization group (RG), application to randomly stirred fluid motion      350—351
Renormalization group (RG), application to sub-grid-scale modelling of turbulence      351—353
Renormalization group (RG), applied to critical phenomena      346
Renormalization group (RG), epsilon expansion      349
Renormalization group (RG), fixed point      148 348
Renormalization group (RG), Forster-Nelson-Stephen theory calculation of the effective viscosity      357—359
Renormalization group (RG), Forster-Nelson-Stephen theory calculation of the effective viscosity, crossover value of e      362
Renormalization group (RG), Forster-Nelson-Stephen theory calculation of the effective viscosity, recursion relations      359—361
Renormalization group (RG), iterative averaging      364
Renormalization group (RG), iterative averaging, conditional (partial) average      367
Renormalization group (RG), iterative averaging, effective dissipation wavenumber      367
Renormalization group (RG), iterative averaging, equations for effective viscosity      377
Renormalization group (RG), iterative averaging, fixed point      377
Renormalization group (RG), iterative averaging, global averaging      368
Renormalization group (RG), iterative averaging, Markovian approximation      375
Renormalization group (RG), iterative averaging, mean field approximation      372 373
Renormalization group (RG), perturbation expansion of the Navier-Stokes equation      355—357
Renormalization, effect on growth of number of terms in perturbation series      339
Renormalization, effective mass of conduction electrons      143
Renormalization, line renormalization      222
Renormalization, partial summation      188—189
Renormalization, screened potential      143 202—203
Renormalization, vertex renormalization      222
Renormalized perturbation theory      144
Renormalized perturbation theory and the turbulence closure problem      184
Renormalized perturbation theory, application to Navier-Stokes equation      205—212
Renormalized perturbation theory, direct-interaction approximation DIA      144
Renormalized perturbation theory, equilibrium system with weak interactions      190—205
Renormalized perturbation theory, perturbation series      146
Renormalized perturbation theory, primitive expansion      208—212
Renormalized perturbation theory, renormalized perturbation series      147
Reshotko, E.      498
Resistance to flow      see “Wall shear stress”
Reversion of power series      240—241 289
Reynolds averaging      7 40
Reynolds equation (for the mean velocity in duct flows)      19
Reynolds number, based on Taylor Microscale (Taylor-Reynolds number)      82
Reynolds number, for boundary layer on a flat plate      12
Reynolds number, for decaying turbulence      31—32
Reynolds number, for dissipation range of wavenumbers      69
Reynolds number, for non-Newtonian fluids      498
Reynolds number, for pipe flow      4
Reynolds stress      8
Reynolds stress, closure approximation      336
Reynolds stress, experimental distribution in duct flows      28
Reynolds stress, experimental distribution in duct flows, in a free jet      32
Reynolds stress, governing equation      10
Reynolds stress, total shear stress tensor      8
Reynolds's analogy      464
Reynolds, O.      4 6 7 8 24 82 110
Reynolds, W.C.      387 388 417 419
Richardson's law      see “Relative diffusion”
Richardson, L.F.      451
Riley, J.J.      386 397 414 416 428 432 448 456
Rivet, J-P.      403
Roach, G.F.      37
Roache, P.J.      112
Roberts, P.H.      452 479
Robertson, H.P.      49 50 59
Rodi, W.      127 128
Rogallo, R.S.      117 124 386 397
Rogers, M.M.      426
Rollin, A.      500
Ronis, D.      379
Rose, H.A.      223 290 352 353
Rosen, G.      176
Roshko, A.      109 407 408 409 432
Ross, M.A.S.      416
Rudd, M.J.      98 505 506
Ruiz de Elvira, A.      337
Runstadler, P.W.      110 417
Ryskin, G.      126
Sabersky, R.H.      519
Sabot, J.      420 424
Saffman, P.G.      105 338 401 427 428 446 447
Sagdeer, R.Z.      142
Sahlin, A.      498
Saibel, E.      502 503
Salih, S.M.      471 490
Salpeter, E.E.      205
Sampanthar, S.      185
Sandborn, V.A.      103
Sano, Y.      506
Satyaprakash, B.R.      109 329
SBLHDI, SBALHDI      see “Lagrangian-history direct-interaction theories”
Scalar transport in homogeneous turbulence      471
Scalar transport in homogeneous turbulence, application of RPTs      478—479
Scalar transport in homogeneous turbulence, Batchelor wavenumber      475
Scalar transport in homogeneous turbulence, Batchelor's model for the viscous ranges of wavenumbers      477—478
Scalar transport in homogeneous turbulence, diffusion cut-off wavenumber      474
Scalar transport in homogeneous turbulence, inertial-convective range of wavenumbers      474
Scalar transport in homogeneous turbulence, inertial-diffusive range of wavenumbers      475
Scalar transport in homogeneous turbulence, numerical simulation      479
Scalar transport in homogeneous turbulence, scalar transfer spectrum      473
Scalar transport in homogeneous turbulence, spectral covariance      472
Scalar transport in homogeneous turbulence, spectrum of scalar variance      473
Scalar transport in homogeneous turbulence, summary of spectral forms      478
Scharf, R.      512
Schertzer, D.      328
Scheuerer, G.      128
Schlicting, H.      8 12 20 33
Schlien, D.J.      448 449
Schmidt number      see also “Heat and mass transfer”
Schmidt number, eddy (turbulent) form      464
Schmidt number, molecular form      462
Schnedler, E.      351
Schraub, F.A.      110 417
Schumann, U.      124 334 335 383 387
Schwar, M.J.R.      490
Schwarz, W.H.      496
Self-consistent field (SCF) theory      257—265
Self-consistent field (SCF) theory, comparison with EFP theory      262
Self-consistent field (SCF) theory, Liouville equation      258
Self-consistent field (SCF) theory, perturbation expansion      261
Self-consistent field (SCF) theory, self-consistency criterion      260
Self-consistent field (SCF) theory, single-mode distribution      259
Self-consistent field (SCF) theory, single-mode operator      259
Self-consistent field (SCF) theory, theory of Balescu and Senatorski      264
Self-consistent field (SCF) theory, theory of Phythian      264—265
Self-consistent field (SCF) theory, time-dependent Liouville equation      262
Senatorski, A.      225 264
Serra, R.      429
Seshadri, V.      141 513
Seyer, F.A.      500
Shanmugasundaram, V.      311 313 316 319 320 324 327 342 352 353 398 401
Shannon, C.E.      291
Sharma, R.S.      141 513 514
Shaver, R.G.      498 499 500 509
She, C.Y.      490
Sheih, C.M.      106
Shenoy, A.V.      499
Shin, H.      135
Shirazi, M.A.      490
Shore, J.E.      291
Sidahmed, G.H.      518
Siggia, E.D.      223 290 383 384 402 427
Simpson, R.L.      419
Skewness of probability distribution      530
Skewness of probability distribution, for decaying turbulence      314
Skewness of probability distribution, independence of Reynolds number      384
Skewness of probability distribution, of the longitudinal velocity difference      102
Skewness of probability distribution, theoretical predictions of      319
Smagorinsky model      see “Subgrid models”
Smagorinsky, J.      120 122 123
Smith, D.M.      95
Smith, K.A.      135 138 139 507
Snyder, W.H.      448 456 490
Sokolov, M.      414 415
Spalart, P.R.      386 427
Spalding, D.B.      125 130
Spangler, J.G.      510
Speziale, C.G      128 389
Spiegel, E.A.      429
Sreenivasan, K.R.      410 425
Stationary turbulence      53
Stationary turbulence, under the action of external stirring forces      71—72
Statistical formulation, many-point form      39—42
Statistical formulation, many-time moments in wavenumber space      63—64
Statistical formulation, single-point form      7—11
Statistical formulation, single-time moments in wavenumber space      64—65
Stegen, G.R.      84 106
Steiner, T.R.      410
Stephen, M.J.      350 357
Stewart, R.W.      104 107 117 269 321 325
Stewart, W.E.      461
Stone, E.      428
Strickland, J.H.      419
Structural turbulence      see “Non-Newtonian flows”
Structure functions      102 328
Sub-ensemble Eulerian correlation coefficient      447
Subgrid models      see also “Large-eddy simulation eddy
Subgrid models, application of RG      397—399
Subgrid models, application of RPT      391—397
Subgrid models, assessment of subgrid models      388—389
Subgrid models, Smagorinsky model      122
Sulem, P-L.      107
Sumer, B.M.      490
Suraiya, T.      518
Swanson, W.M.      515
Takeuchi, K.      377
Talathi, M.M.      499
Tanner, R.I.      502 503 521
Tatsumi, T.      78
Tavoularis, S.      409
Taylor hypothesis of 'frozen convection'      62
Taylor microscale      51—52
Taylor microscale, for decaying turbulence      313—324
Taylor's analysis of turbulent diffusion      see “Diffusion by continuous movements and relative diffusion”
Taylor, A.R.      519 520
Taylor, G.I.      36 62 73 75 82 400 437 441 445 448 453 467 483 486
Taylor, T.D.      112
Taylor, W.D.      138
Taylor-Green vortex      400
Taylor-Reynolds number      see “Reynolds number”
Tchen's analysis      see “Diffusion by continuous movements”
Teh, E.W.      414
Tels, M.      511
Temam, R.      330
Tennekes, H.      83 84 86 103 105 106 330
TerHaar, D.      143
Test problems in isotropic turbulence      176—181
Test problems in isotropic turbulence, free decay      177
Test problems in isotropic turbulence, stationary turbulence      179
Test problems in isotropic turbulence, stationary turbulence, cross-correlation of stirring force with the velocity field      181
Test problems in isotropic turbulence, stationary turbulence, random stirring forces      180
Test-field model      see “Near-Markovian model closures”
Thin shear layer      see “Boundary layer approximation”
Thomas, A.S.W.      431
Thomas, D.M.C.      445
Thompson, D.W.      509
Thwaites, B.      33
Tiederman, W.G.      419 505 506 507 508 510 515
Time scales      see “Eddy turnover time” “Integral “Lagrangian “Lagrangian “Taylor
Time series analysis      98
Time series analysis, aliasing errors      99
Tollmien-Schlicting waves      430
Tolmien, W.      24 31
Toms, B.A.      132
Townsend, A.A.      33 75 86 100 103 105 321 410 475 484
Transfer spectrum      see “Energy transfer spectrum” “Scalar
Transition from laminar to turbulent flows      406
Transitional structures      see “Coherent structures”
Transport power      236 296
Transport power, for decaying turbulence      313
Troutt, T.R.      409
Tsinober, A.      351
Tsuji, Y.      490
Tu, B.J.      421
Tukey, J.W.      99
Tulin, M.P.      519
Tullis, J.P.      519
Tur, A.V.      142
Turbulence models, $k-\varepsilon$ model      128
Turbulence models, algebraic stress models      128
Turbulence models, two-equation models      127
Turbulent bursts      110—122
Turbulent bursts, ejection-sweep cycle      112 417
Turbulent bursts, frequency of bursts      418—420
Turbulent bursts, frequency of bursts in drag-reducing fluids      509—521
Turbulent bursts, low-speed streaks      110—417
Turbulent bursts, production of turbulence      111
Turbulent bursts, streaky structure      418
Turbulent bursts, streaky structure and streamwise vortices      420—423
Turbulent diffusion in an Eulerian frame      see “Diffusion by continuous movements” “Heat “Scalar
Turbulent diffusion of particles (in an Eulerian framework)      see also “Diffusion by continuous movements”
Turbulent diffusion of particles (in an Eulerian framework), finite-step diffusion coefficient      486
Turbulent diffusion of particles (in an Eulerian framework), governing equation      480—482
Turbulent diffusion of particles (in an Eulerian framework), mean motion effects      483 490
Turbulent diffusion of particles (in an Eulerian framework), measurements in turbulent flows      489—490
Turbulent diffusion of particles (in an Eulerian framework), perturbation treatment of finite inertia      488—489
Turbulent diffusion of particles (in an Eulerian framework), random walk models      484—487
Turbulent diffusion of particles (in an Eulerian framework), turbulent diffusion coefficient      481—483
Turbulent mixing      490—491
Turbulent mixing, diffusion limited      491
Turbulent spots      see “Coherent structures”
Two-dimensional mean flows      1
Two-dimensional mean flows as a special case      12
Uberoi, M.S.      84
Ueda, H.      424
Ultraviolet catastrophe      166
Umhauer, H.      490
Unidirectional laminar flow      3
Unphysical oscillations, in response function of DIA      317
Unphysical oscillations, in response function of LET      324
Usui, H.      505 506 508 509 511 518
Van Atta, C.W.      78 84 106 107 165 313 329 416
van Beijeren, H.      190
Van Der Hegge Zijnen, B.G.      470 471 487
Van Doormaal, J.P.      125
van Driest, E.R.      388 499 507
Van Dyke, M.      31 34
Vaseleski, R.C.      141 497
Vassiliadou, E.      518
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте