|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
McComb W. D. — The Physics of Fluid Turbulence |
|
|
Предметный указатель |
-model 107—109
vortices 422—424
vortices, evidence from numerical simulation 427
'aliasing', in the calculation of Fourier sums 117
'aliasing', in the one-dimensional turbulent energy spectrum 83
'law of the wall' see “Mean velocity”
'Toms effect' 132 see
Abernathy, F. H. 136 138 501
Absolute equilibrium ensembles 166
Abuaf, N. 490
Achia, B. U. 509
Ackermann, P. G. 223
Acrivos, A. 497
Agoston, G. A. 133
Alfredsson, P. H. 420 498
ALHDI, abridged LHDI see “Lagrangian-history direct-interaction theories”
Allan, J. J. 500 503 506 508 509
Allen, J. R. 331
Almost-Markovian models 335 see
Amit, D. J. 141 346
Anand, R. K. 470
Andretta, M. 429
Anselmet, F. 109 329
Antonia, R. A. 62 107 109 329 410 412 425 464 467
Apparent coefficient of viscosity, for a non-Newtonian fluid 495
Apparent coefficient of viscosity, for turbulent flow 8
Aref, H. 402 427 429
Arunachalam, V. R. 133 520
Arundel, P. A. 490
Ash, R. L. 498
Ashurst.W. T. 402 427
Asymptotic series 147
Atkinson, J. D. 412
Aubry, N. 428 430 432
Averaging methods, bulk mean velocity 4
Averaging methods, conditional average 413
Averaging methods, ensemble average 39
Averaging methods, global average 368
Averaging methods, partial average 367
Averaging methods, phase average 425
Averaging methods, shell-averaged energy spectrum 115
Averaging methods, spatial average, rolling average in LES 388
Averaging methods, time averages 5—6
Averaging methods, zone average 411—422
Ayyash, S. Y. 503
Badri Narayanan, M. A. 419
Baker, G. R. 401 427
Bakewell, H. P. 27 418
Baldwin, L. V. 458 470
Balescu, R. 143 157 159 161 165 182 186 193 196 197 205 225 264
Bandyopahyay, P. 421
Barker, S.J. 416 512
Barnes, F.H. 416
Barrow, J. 416
Batchelor, G.K. 2 3 23 50 52 55 59 63 73 74 77 86 100 102 103 105 166 178 313 314 334 441 447 451 457 458 460 467 470 475 477 482 483
BBGKY hierarchy 159
BBGKY-type treatment of turbulence 159—160
Becker, A.H. 490
Bednarik, H.V. 489
Beljaars, A.C.M. 431
Benjamin, T.B. 498
Beran, M.J. 176 182
Berkowicz, R. 467
Berlemont, A. 456
Berman, N.S. 138 448
Bernal, L.P. 432
Bernoulli distribution see “Binomial distribution”
Bertschy, J.R. 501
Betchov, R. 167
Bewersdorff, H.W. 511
Bhattacharjee, J.K. 379
Binnie, A.M. 457
Binomial distribution 529
Bird, R.B. 192 461 462
Biringen, S. 387 427
Birnbaum, Z.W. 78
Blackman, R.B. 99
Blackwelder, R.F. 411 414 419 421 423 424
Blasius empirical formula for wall shear stress see also “Wall shear stress”
Blasius empirical formula for wall shear stress, extension to non-Newtonian fluids 499
Blasius empirical formula for wall shear stress, in boundary layers 18
Blasius empirical formula for wall shear stress, in flow through ducts 118
Bobkowicz, A.J. 514 519
Bogard, D.G. 510
Boltzmann equation 161
Bookkeeping parameter k 145 191 206 226 232—233 246 292 301 304 359
Boundary-layer approximation 2
Boundary-layer thickness 12
Boundary-layer thickness, associated Reynolds number 12
Boundary-layer, constant-stress layer 14
Boundary-layer, equations of motion 13
Boundary-layer, turbulent buffer layer 15
Boundary-layer, turbulent inner layer length scale 15
Boundary-layer, turbulent inner layer velocity scale 15
Boundary-layer, turbulent inner layer, outer layer 14
Boundary-layer, turbulent length and velocity scales 14
Boundary-layer, turbulent viscous sublayer 15
Bourret, R. 241
Brachet, M.E. 400 401
Bradbury, L.J.S. 24
Bradshaw, P. 20 27 34 74 86 409
Bragg, G.M. 489
Bragg, R. 497
Breidenthal, R.E. 432
Britz, D. 410
Brodkey, R.S. 112 417 418 419
Browand, F.K. 110 408 409 428
Brown, G.L. 109 407 408 409 432
Brown, L.W.B. 62
Brown-Roshko vortices see “Coherent structures”
Bruce, C. 496
Bruun, H.H. 410
Bryson, A.W. 520
Buchave, P. 98
Buckley, F.T. 27
Burling, R.W. 117
Bursts see “Turbulent bursts”
Bushnell, D.M. 498
Butson, J. 509
Callen, N.S. 389
Cambon, C. 335
Cant well, B.J. 416 432
Carlson, D.R. 414
Carr, M.P. 126
Carver, C.E. 500
Central limit theorem 531
Centroid and relative coordinate system for two-point correlations 43
Cermak, J.E. 458
Chambers, F.W. 431
Chambers, T.L. 127
Champagne, F.H. 329 410 414
Chan, K.T.J. 141 513 515 516 517 519 521
Chandrasekhar, S. 222 223 433 484 486
Chandrasekhara, M.S. 24 31 33
Chandrsuda, C. 409
Chao, B.T. 490
Chaos 428—430
Charnay, G. 95
Chatwin, P.C. 457
Chen, W.Y. 78 84 106 165 313 329
Chin, R.W. 501
Chollet, J-P. 392 396 397
Chong, M.S. 423
Chorin, A.J. 331 343 344
Chou, P.Y. 36
Chow, P.L. 502 503
Chung, J.S. 505 506
Clark, R.A. 388
Closure problem 6—7
Closure problem, most general form 42
| Cocke, W.J. 74
Coherent structures 2 109 see “Phase “Intermittency
Coherent structures, Brown-Roshko roll vortices in the mixing layer 109—110 407—409
Coherent structures, in free shear flows 410
Coherent structures, quasi-periodic, non-deterministic 109
Coherent structures, turbulent slugs and puffs in pipe flow 414—425
Coherent structures, turbulent spots in boundary layers 413—424
Coherent structures, vortex pairing versus vortex tearing 110 428
Coherent structures, wave packets and turbulent spots 430
Coles, D. 416
Collins, J.C. 141
Collins, M.C. 124
Compiani, M. 429
Comte-Bellot, G. 91 420 424 448
Convolution of two functions 538
Cooley.J.W. 99
Corino.E.R. 112 417 418
Correlation coefficient see also “Lagrangian autocorrelation and correlation coefficient”
Correlation coefficient, cumulants of a distribution 530
Correlation coefficient, experimental value in flow through a pipe 28
Correlation coefficient, for fluctuating velocities near a solid surface 21
Correlation coefficient, general two-point form 44
Correlation coefficient, transverse and longitudinal correlation coefficients 50—51
Corrsin, S. 74 75 103 105 337 409 417 445 446 448 449 455 457 465 467 474 491
Crawford, H.R. 133 136 139
Crow, S.C. 410
Csanady, G.T. 467
Cummins, H.Z. 92
Curtiss, C.F. 192
d'Humieres, D. 403
Darby, R. 496
Davidson, G.A. 487 488
Davis, R.W. 428
Davis, S.H. 423
de Dominicis, C. 328 351 363
de Vries, D.A. 431
Deardorff, J.W. 120 123 124 387 448 449
Debye, P. 143 201 202
Degrees of freedom in isotropic turbulence 113—124
Degrees of freedom in isotropic turbulence, Fourier modes as 381
Degrees of freedom in isotropic turbulence, reduction of 365
Degrees of freedom in isotropic turbulence, relationship to Taylor-Reynolds number 381—382
Deissler, R.G. 429 467
Desjonqueres, P. 456
Deviatoric stress tensor, Newtonian fluid 3 524
Deviatoric stress tensor, non-Newtonian fluid 495—497
Dhar, D. 74
Diagrams (in perturbation theory) 147
Diagrams (in perturbation theory), application to electron gas 204—205
Diagrams (in perturbation theory), disconnected graphs, reducibly connected graphs and irreducibly connected graphs 198
Diagrams (in perturbation theory), Feynman-type diagrams 186
Diagrams (in perturbation theory), for DIA as a second-order closure 221—222
Diagrams (in perturbation theory), for perturbation expansion of Navier-Stokes equation 213—223
Diagrams (in perturbation theory), for perturbation expansion of Navier-Stokes equation, class A diagrams 217—228
Diagrams (in perturbation theory), for perturbation expansion of Navier-Stokes equation, class B diagrams 218—221
Diagrams (in perturbation theory), introduction to the graphical method 196—201
Diagrams (in perturbation theory), partial summation 188—190
Diffusion see “Diffusion by continuous movements” “Turbulent
Diffusion by continuous movements: Taylor's analysis 437—441
Diffusion by continuous movements: Taylor's analysis, equivalence to the diffusion problem in Eulerian coordinates 460—461
Diffusion by continuous movements: Taylor's analysis, extension to discrete particles 452
Diffusion by continuous movements: Taylor's analysis, extension to discrete particles, 'crossing trajectories' 456
Diffusion by continuous movements: Taylor's analysis, extension to discrete particles, Tchen's analysis 454—456
Diffusion by continuous movements: Taylor's analysis, extension to shear flows 456—458
Diffusion by continuous movements: Taylor's analysis, extension to three dimensions 441
Diffusion by continuous movements: Taylor's analysis, for long diffusion times 440
Diffusion by continuous movements: Taylor's analysis, for short diffusion times 440
Diffusion by continuous movements: Taylor's analysis, turbulent diffusion coefficient 440—441
Dimant, Y. 519
Dimotakis, P.E. 408 409 416
Direct interaction (in DIA) 338
Direct interaction approximation (DIA) 225—241 see ALHDIA” “Renormalized
Direct interaction approximation (DIA) application to axisymmetric turbulence 334
Direct interaction approximation (DIA) application to inhomogeneous turbulence 331—338
Direct interaction approximation (DIA) calculation of freely decaying turbulence 316—328
Direct interaction approximation (DIA) conservation of energy 236
Direct interaction approximation (DIA) equation for response function 234
Direct interaction approximation (DIA) equation for the correlation function 234
Direct interaction approximation (DIA) idealised convection problem 273
Direct interaction approximation (DIA) inertial-range, 3/2 power law 237
Direct interaction approximation (DIA) infinitesimal response tensor 226
Direct interaction approximation (DIA) mean response tensor 227
Direct interaction approximation (DIA) physical realizability 241
Direct interaction approximation (DIA) spurious convection effects 269—274
Direct interaction approximation (DIA) violation of random Galilean invariance 276
Dissipation rate 9 524 526
Dissipation rate, estimate for pipe flow 117
Dissipation rate, fluctuations in 104 328
Dissipation rate, for decaying turbulence 313
Dissipation rate, local dissipation rate 108
Dissipation rate, measured distribution in flow through a pipe 29—31
Dissipation rate, relationship to energy spectrum of isotropic turbulence 66
Dissipation rate, relationship to the Taylor microscale for isotropic turbulence 52
Dissipation spectrum 84
Dissipation spectrum, for decaying turbulence 313
Dodge, D.W. 498
Domaradzki, J.A. 397
Dopazo, C. 413
Dorfman, J.R. 190
Drag 132 see
Drag reduction see also “Drag reduction by additives”
Drag reduction by additives 130
Drag reduction by additives additive degradation 134
Drag reduction by additives comparison of macroscopic fibres with microscopic polymers 520—521
Drag reduction by additives definition 131
Drag reduction by additives effect on heat and mass transfer 518—529
Drag reduction by additives effect on turbulent diffusion 519—520
Drag reduction by additives heterogeneous drag reduction 511
Drag reduction by additives homogeneous drag reduction 511
Drag reduction by additives in fibre suspensions 133 140—141
Drag reduction by additives in polymer solutions 133—140
Drag reduction by additives maximum drag reduction asymptote 140
Drag reduction by additives natural occurrence 133
Drag reduction by additives threshold (onset) effect 136—139
Drag reduction, by flexible walls 498
Drag reduction, in heated boundary layers 498
Drag, form drag 132
Drag-reducing fibre suspensions, frequency of turbulent bursts 521
Drag-reducing fibre suspensions, intensities, correlations and spectrum 514—527
Drag-reducing fibre suspensions, mean velocity distributions 512—524
Drag-reducing fibre-polymer suspensions 517—528
Drag-reducing polymer solutions, effect on free turbulence 511—522
Drag-reducing polymer solutions, effect on turbulent structure 505—506
Drag-reducing polymer solutions, frequency of bursts 509 521
Drag-reducing polymer solutions, importance of the region near the wall 509—511
Drag-reducing polymer solutions, mean velocity distributions 506—507
Drag-reducing polymer solutions, spectra and correlations 509
Drag-reducing polymer solutions, turbulent intensities and Reynolds stress 508—509
Drag-reducing polymer solutions, ultimate mean velocity profile 507
Drain, L.E. 98
Drazin, P.G. 433
Driscoll, R.J. 84
Dubois, D. 337
Dukler, A.E. 484
Dumas, R. 464
Durbin, P.A. 451
Durrani, T.S. 98
Durst, F. 98 490
Dwyer, H.A. 126
Early turbulence see “Non-Newtonian fluids”
Eckelmann, H. 24 419 421 423
Eddy diffusivity 464 see “Diffusion
Eddy turnover time 315
Eddy-viscosity hypothesis 20 see
Eddy-viscosity hypothesis, Boussinesq form 128
Eddy-viscosity hypothesis, Heisenberg-type 76 430
Eddy-viscosity hypothesis, Kolmogorov-Prandtl form 127
Edwards, A.V.F. 402
Edwards, S.F. 184 225 241 242 243 244 247 249 250 252 253 254 255 257 258 262 265 290 291 292 294 298 302 335 336 339 340 364 379 391 497
Edwards-Fokker-Planck theory 241—257 see
|
|
|
Реклама |
|
|
|