Электронная библиотека Попечительского совета
механико-математического факультета
Московского государственного университета
Главная
Ex Libris
Книги
Журналы
Статьи
Серии
Каталог
Wanted
Загрузка
ХудЛит
Справка
Поиск по индексам
Поиск
Форум
Авторизация
Поиск по указателям
Lee M.H. — Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms
Обсудите книгу на
научном форуме
Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter
Название:
Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms
Автор:
Lee M.H.
Язык:
Рубрика:
Математика
/
Алгебра
/
Алгебраическая геометрия
/
Статус предметного указателя:
Готов указатель с номерами страниц
ed2k:
ed2k stats
Год издания:
2005
Количество страниц:
244
Добавлена в каталог:
12.03.2005
Операции:
Положить на полку
|
Скопировать ссылку для форума
|
Скопировать ID
Предметный указатель
Siegel modular form
100
-fixed sheaf
39
(g, K)-module
128
130
135
1-cochain
213
1-cocycle
165
167
2-cocycle
210
Abelian variety
91
96
Alternating bilinear form
144
Arithmetic subgroup
94
122
145
Arithmetic variety
91
145
Automorphic form
15
113
126
166
Automorphy factor
12
85
91
166
181
197
214
222
Baily — Borel compactification
93
Bergman kernel function
173
Bergman metric
174
Bilinear form
75
76
Boundary modular symbol
44
45
Canonical automorphy factor
151
156
186
202
Canonical kernel function
152
156
186
Cartan decomposition
151
155
Chern class
165
Circle bundle
181
Clifford algebra
142
Coboundary
30
211
Coboundary operator
210
Cocycle
30
61
Cocycle condition
13
85
Cohomologous
165
Cohomology
30
81
222
Cohomology along the fibers
222
Complex structure
144
146
Complex torus
91
148
Cusp
12
85
Cusp form
15
23
Differential equation
30
Differential operator
29
Direct image functor
222
Direct image sheaf
36
Dirichlet series
105
Dolbeault’s theorem
222
Dominant k-weight
120
Dual lattice
199
Eichler embedding
101
195
Eichler — Shimura isomorphism
70
Eichler — Shimura relation
56
Eisenstein series
17
122—124
130
137
Elliptic fibration
41
Elliptic surface
41
44
52
Elliptic variety
42
Equivariant
142
Equivariant holomorphic map
12
142
Equivariant pair
12
44
52
85
142
Family of abelian varieties
91
95
96
Fiber bundle
90
96
Filtration
73
75
Fock representation
185
194
198
Fourier coefficient
28
87
105
137
Fourier expansion
14
15
24
25
37
39
86
87
99
199
Fourier series
199
Fuchsian group of the first kind
12
30
Fundamental 2-form
168
Fundamental domain
68
Fundamental group
29
Gamma function
24
100
Generalized Heisenberg group
201
Generalized Jacobi group
155
178
Gevrey space
130
Group cohomology
79
211
Group of Harish — Chandra type
155
Group of Hermitian type
142
Hecke operator
103
Heisenberg group
155
185
190
193
194
Hermitian manifold
168
Hermitian metric
174
Hermitian structure
166
201
Hermitian symmetric domain
110
142
Hessian matrix
168
174
Hilbert modular form
196
Hilbert modular variety
90
Hilbert — Schmidt operator
194
Hodge decomposition
77
Hodge structure
77
Hypercohomology
77
Iwasawa decomposition
125
Jacobi form
182
200
205
Jacquet integral
133
K-finite
116
128
k-parabolic subgroup
120
k-split torus
120
Kaehler manifold
168
Kaehler metric
168
Kernel function
167
Koecher’s principle
88
Kronecker pairing
81
Kuga fiber variety
142
148
151
204
218
Langlands decomposition
120
125
136
Lattice
95
195
Lie group of Hermitian type
110
Line bundle
91
165
166
183
Linear algebraic group
120
Linear fractional transformation
12
Locally symmetric space
145
148
220
Maximal compact subgroup
113
126
142
Minimal parabolic subgroup
125
Mixed automorphic form
15
111
114
126
162
220
Mixed cusp form
15
23
40
56
62
Mixed Hilbert cusp form
88
Mixed Hilbert modular form
84
88
Mixed Shimura variety
93
Mixed Siegel modular form
95
Modular form
205
Modular symbol
44
46
49
53
54
Monodromy representation
29
30
41
44
52
76
Pairing
65
66
Parabolic cohomology
61
76
Parabolic element
12
85
Parabolic subgroup
12
Period
31
52
Period map
31
44
52
56
57
Petersson inner product
24
67
100
Poincare series
17
24
104
112
117
118
133
Poincare upper half plane
12
Poincare's lemma
227
Polarization
76
Principal series representation
126
Quasi-character
196
198
Quasi-invariant distribution
133
Real Chern class
165
Real reductive group
125
Riemann surface
29
40
41
Semidirect product
89
145
Semisimple Lie groups
113
Shea
38
Sheaf
36—40
44
Shimura variety
93
Siegel cusp form
99
100
Siegel modular form
99
Siegel modular variety
96
Siegel upper half space
94
145
201
Slowly increasing
113
Smplectic group
4
144
145
Spin group
143
Square-integrable function
126
Standard family
96
Symmetric tensor power
64
Symplectic basis
144
153
Tensor power
39
Theta function
194
195
197
Toroidal compactification
94
Torus bundle
200
204
217
Totally real number field
84
Twisted torus bundle
181
210
Unipotent radical
120
Unitary representation
126
193
Variation of Hodge structure
75
76
Vector bundle
223
Weyl group
134
Whittaker vector
131
133
Z(g)-finite
113
Реклама
©
Электронная библиотека попечительского совета мехмата МГУ
, 2004-2025
|
|
О проекте