Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Borwein P, Erdelyi T — Polynomials and polynomial inequalities
Borwein P, Erdelyi T — Polynomials and polynomial inequalities



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Polynomials and polynomial inequalities

Àâòîðû: Borwein P, Erdelyi T

Àííîòàöèÿ:

Polynomials pervade mathematics, virtually every branch of mathematics from algebraic number theory and algebraic geometry to applied analysis and computer science, has a corpus of theory arising from polynomials. The material explored in this book primarily concerns polynomials as they arise in analysis; it focuses on polynomials and rational functions of a single variable. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis. After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Müntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality conclude the book.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àíàëèç/Ïðîäâèíóòûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 473

Äîáàâëåíà â êàòàëîã: 01.04.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$l_p$ norm      6 48 471
Abel, Niels Henrik      3 61
Algorithms      356—371
Algorithms for Chebyshev polynomials      371
Algorithms for counting zeros      364—370
Algorithms for polynomial evaluations      363
Algorithms for reversion of power series      362
Algorithms, evaluation of $x^n$      363
Algorithms, fast Fourier transform      359
Algorithms, fast polynomial division      362
Algorithms, fast polynomial expansion      363
Algorithms, fast polynomial multiplication      361
Algorithms, interpolation      360
Algorithms, Newton’s method      362 364—367
Algorithms, Remez      371
Algorithms, zero finding for polynomials      366—370
Alternation set      93
Alternation theorem      94
Apolar polynomials      23 24 25
Arc length of algebraic polynomials      31
Arc length of trigonometric polynomials      35
Berman’s formula      166
Bernstein factor      145 150 152 322—328
Bernstein polynomials      163—164
Bernstein — Szego inequality      231 245 259 321—323
Bernstein — Szego inequality for entire functions of exponential type      245
Bernstein — Szego inequality for rational functions on $\mathbb{R}$      323
Bernstein — Szego inequality for rational functions on K      322
Bernstein — Szego inequality for rational functions on [—1,1]      322
Bernstein — Szego inequality for trigonometric polynomials      232
Bernstein-type inequality for Chebyshev spaces      206
Bernstein-type inequality for constrained polynomials      420—447
Bernstein-type inequality for entire functions of exponential type      245
Bernstein-type inequality for exponential sums      289
Bernstein-type inequality for generalized polynomials      392—416
Bernstein-type inequality for generalized polynomials in $L_p$      401—417
Bernstein-type inequality for higher derivatives      258
Bernstein-type inequality for nondense Miintz spaces      213 310
Bernstein-type inequality for polynomials      232—233 390
Bernstein-type inequality for polynomials in $L_p$      235 390 401—417
Bernstein-type inequality for products of Miintz spaces      317
Bernstein-type inequality for rational functions on $\mathbb{R}$      323 329
Bernstein-type inequality for rational functions on D      324
Bernstein-type inequality for rational functions on K      322 327
Bernstein-type inequality for rational functions on [—1,1]      323 327
Bernstein-type inequality for self-reciprocal polynomials      339
Bernstein-type inequality for trigonometric polynomials      232
Bernstein-type inequality, bounded      178 182 213—214
Bernstein-type inequality, unbounded      154 206—217
Bernstein-type inequality, weighted      257
Bessel’s inequality      46
Best approximation      94
Best approximation to $x^n$      99
Best approximation to $x^{\lambda}$, a problem of Lorentz      108
Best approximation, uniqueness      98
Best approximationby rationals      99
Binomial coefficient      62
Blaschke product      190 324
Blumenthal’s theorem      78
Bombieri’s norm      274
Bounded Bernstein-type inequality      see “Bernstein-type inequality”
Bounded Chebyshev-type inequality      see “Chebyshev-type inequality”
Bounded linear functionals      50
Budan — Fourier theorem      369
Cardano, Girolamo      3
Cartan’s lemma      350
Cauchy determinant      106
Cauchy indices      367
Cauchy — Schwarz inequality      42
Cauchy — Schwarz inequality for sequences      46
Cauchy’s integral formula      14
Cesaro means      165
Chebyshev constants      39
Chebyshev polynomials in Chebyshev spaces      114—125
Chebyshev polynomials in rational spaces      see “Chebyshev rationals”
Chebyshev polynomials, algorithms for      371
Chebyshev polynomials, best approximation to $x^n$      30
Chebyshev polynomials, composition, characterization      33
Chebyshev polynomials, explicit formulas      30 32
Chebyshev polynomials, orthogonality      32
Chebyshev polynomials, reducibility      36
Chebyshev polynomials, second kind      37
Chebyshev polynomials, three-term recursion      32
Chebyshev polynomials, trigonometric on subintervals      235
Chebyshev polynomials, uniqueness      118
Chebyshev rationals      139—153
Chebyshev rationals and orthogonality      147
Chebyshev rationals in algebraic rational spaces      142
Chebyshev rationals in trigonometric rational spaces      143
Chebyshev rationals of the first and second kind      141
Chebyshev rationals on the real line      151
Chebyshev rationals, derivative formulas      146
Chebyshev rationals, partial fraction representation      144
Chebyshev space      92
Chebyshev space, dimension on the circle      100
Chebyshev space, functions with prescribed sign changes      100
Chebyshev system      91—100
Chebyshev system, extended complete      97
Chebyshev, P.L.      31
Chebyshev-type inequality for entire functions of exponential type      245
Chebyshev-type inequality, bounded      179 182
Chebyshev-type inequality, explicit bounds via Paley — Weiner theorem      196
Chebyshev’s inequality      235 390
Christoffel function      74
Christoffel function for Miintz spaces      195
Christoffel numbers      67
Christoffel — Darboux formula      60
Coefficient bounds for polynomials in special bases      124
Coefficient bounds in nondense rational spaces      153
Coefficient bounds of Markov      248
Comparison theorem      103 120 122 183
Completeness      48 79
Complexity concerns      356—371
Consecutive zeros of p'      26
Constrained polynomials      417—447
Constrained polynomials, $L_p$ inequalities      422
Constrained polynomials, Bernstein-type inequality      420 425 427
Constrained polynomials, Markov-type inequality      417—447
Constrained polynomials, Nikolskii-type      444
Constrained polynomials, Remez-type      443—445
Constrained polynomials, Schur-type      436—437
Cotes numbers      67
Cubic equations      4
de la Vallee Poussin theorem      99
Denseness      154—226
Denseness of Markov spaces      206—217
Denseness of Miintz polynomials      171—205
Denseness of Miintz rationals      218—226
Denseness of polynomials      154—170
Derivatives of Markov systems      112
Descartes system      100—113
Descartes system, examples      103
Descartes system, lexicographic properties      103
Descartes’ Rule of Signs      22 102
Divide and conquer      358
Division of polynomials      15 362
d’Alembert, Jean le Rond      13
Elementary symmetric function      5
Enestrom — Kakeya theorem      12
Erdos inequality      431
Erdos — Turan inequality      435
Euler, Leonhard      13
Evaluation of $x^n$      363
Exponential sums      see “Miintz polynomials”
Exponential sums with nonnegative exponents      294
Exponential sums, a problem of Lorentz      291
Exponential sums, Bernstein-type inequality      291
Exponential sums, Markov-type inequality      294
Exponential sums, Nikolskii-type inequality      289
Exponential sums, Turan’s inequality      295
Exponential type      196 245
Extended complete Chebyshev system      97
Factor inequalities      260—274
Factor inequalities, via Mahler’s measure      271—273
Factorization      10 36
Fast Fourier Transform      359
Favards theorem      73
Fejer gap      27—28
Fejer operators      164
Fejer’s theorem      165
Fekete point      38
Fekete polynomial      38
Ferrari, Ludovico      3
Ferro, Scipione del      3
Fourier coefficient      53
Fourier series      53
Fundamental theorem of algebra      3
Gamma function      63
Gauss — Jacobi quadrature      67 75
Gauss — Lucas Theorem      18
Gauss, Carl Friedrich      13
Gaussian hypergeometric series      62
Gegenbauer polynomials      65
Generalized polynomials, $L_p$ inequalities      401—407
Generalized polynomials, Bernstein-type inequality      399 407
Generalized polynomials, Markov-type inequality      399 407
Generalized polynomials, Nikolskii-type inequality      394—395
Generalized polynomials, Remez-type inequality      393—394 414
Generalized polynomials, Schur-type inequality      395
Generalized polynomials, weighted inequalites      407
Girard, Albert      13
Grace’s complex version of Rolle’s theorem      25
Grace’s theorem      18
Gram — Schmidt      44
Gram’s lemma      176
Haar space      92
Haar system      92
Halley’s method      365
Hardy space      189
Helly’s convergence theorem      71
Helly’s selection theorem      71
Hermite interpolation      9
Hermite polynomials      57
Hermite polynomials, explicit formulas      65
Hilbert space      42
Holder’s Inequality      17 49
Horner’s rule      8
Hypergeometric differential equation      63
Hypergeometric functions      62
Identity Theorem      15
Inequalities for Miintz polynomials      see “Miintz polynomials”
Inequalities, Bernstein — Szego inequality      see “Bernstein — Szego inequality”
Inequalities, Bernstein-type      see “Bernstein-type inequality”
Inequalities, Bessel’s      see “Bessel’s inequality”
Inequalities, bounded Bernstein-type      see “Bounded Bernstein-type inequality”
Inequalities, bounded Chebyshev-type      see “Bounded Chebyshev-type inequality”
Inequalities, Cauchy — Schwarz      see “Cauchy — Schwarz inequality”
Inequalities, Chebyshev-type      see “Chebyshev-type inequality”
Inequalities, for factors      see “Factor inequalities”
Inequalities, Holder’s      see “Holder’s inequality”
Inequalities, Lax-type      see “Lax”
Inequalities, Markov-type      see “Markov-type inequality”
Inequalities, metric      see “Metric inequalities”
Inequalities, Minkowski’s      see “Minkowski’s inequality”
Inequalities, Nikolskii-type      see “Nikolskii-type inequality”
Inequalities, Remez-type      see “Remez-type inequality”
Inequalities, Russak’s      see “Russak”
Inequalities, Schur-type      see “Schur-type inequality”
Inequalities, triangle      see “Triangle inequality”
Inequalities, unbounded Bernstein-type      see “Unbounded Bernstein-type inequality”
Inner product      41
Inner product space      41
Integer-valued polynomials      10
Interpolation, Hermite      see “Hermite interpolation”
Interpolation, Lagrange      see “Lagrange interpolation”
Interpolation, Newton      see “Newton interpolation”
Jacobi polynomials      57 63
Jacobi polynomials, explicit formulas      63
Jensen circles      19
Jensen’s formula      187
Jensen’s Inequality      414
Jensen’s theorem      19
Kernel function      47 132
Kolmogorov’s inequality      285
Korovkin’s theorems      163
Lacunary spaces      308
Lacunary spaces, quasi-Chebyshev polynomials      316
Lagrange interpolation      8
Laguerre polynomials      57 66 130
Laguerre polynomials, explicit formulas      66
Laguerre’s Theorem      20
Lax-type inequality      438
Lax-type inequality for rationals      329
Lax-type inequality on a half-plane      338
Lax-type inequality, Malik’s extension      438
Legendre polynomials      57
Lemniscates of constant modulus      352—353
Lexicographic properties      116
Lexicographic properties for Miintz polynomials      120 314
Lexicographic properties for Muntz — Legendre polynomials      136
Lexicographic properties for sinh systems      122
Liouville’s theorem      15
Logarithmic capacity      38
Lorentz degree      82
Lorentz degree for polynomials      86
Lorentz degree for trigonometric polynomials      89
Lorentz’s problem      108 291
Lucas’ Theorem      18
m-distribution      57
Mahler’s measure      271
Mairhuber theorem      98
Markov system      100
Markov system, closure of nondense      211
Markov system, derivative of      112
Markov — Stieltjes inequality      76
Markov-type inequality for $\mathcal{P}_n$      233
Markov-type inequality for $\mathcal{P}_n^c$      255
Markov-type inequality for constrained polynomials      417—447
Markov-type inequality for constrained polynomials in $L_p$      422 428—429
Markov-type inequality for exponential sums      276—280 294—295
Markov-type inequality for generalized polynomials      399—407 445
Markov-type inequality for generalized polynomials in $L_p$      401—407
Markov-type inequality for higher derivatives      248—260
Markov-type inequality for monotone polynomials      439—441
Markov-type inequality for Muntz polynomials      276—279 287—288
Markov-type inequality for Muntz polynomials in $L_p$      279—280
Markov-type inequality for nonnegative polynomials      420 439
Markov-type inequality for rational functions      336
Markov-type inequality for self-reciprocal polynomials      339
Markov-type inequality for trigonometric polynomials on subintervals      242—245
Markov-type inequality in the complex plane      235
Markov-type inequality, weighted      442—443
Maximum principal      15
Mergelyan’s theorem      170
Mesh of zeros      155
Metric inequalities      344—355
Metric inequalities for polynomials      345—346
Metric inequalities for rational functions      347—349
Metric inequalities in $L_p$, $p \leq 1$      52
Minkowski’s inequality in $L_p$, $p \geq 1$      49
moment      57
Moment problem      70
Monotone operator theorem      163
Multiplication of polynomials      361
Muntz polynomials, bound for smallest zero      313
Muntz polynomials, bounded Bernstein-type inequality      178 182 213 310 317
Muntz polynomials, lexicographic properties of zeros      116 120
Muntz polynomials, Newman’s inequality      276 301
Muntz polynomials, Newman’s inequality in $L_p$      279
Muntz polynomials, Newman’s problem      317
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå