Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Physics of Fractal Operators
Àâòîðû: West B.J., Bologna M., Grigolini P.
Àííîòàöèÿ: This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2003
Êîëè÷åñòâî ñòðàíèö: 354
Äîáàâëåíà â êàòàëîã: 13.12.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
action 12
Activation energy 278
Aggregation 307
Anagram 235
Anisotropy 173
Anomalous diffusion 301—304
Anomalous diffusion, stochastic oscillator 319
Ant 301
Antipersistent process 302
Applied strain 241
Applied stress 241
Arrhenius form 278
Atomists 75
Autocorrelation function 289—295
Average 196
Average, of displacement 197 317
Basin of attraction 286
Bernoulli sequence binomial, theorem 201
Binomial, coefficient 201
biology 184
Biomedical phenomena 265
Boltzmann 3 38 75 214 244 292
Boltzmann, distribution 323
Boson 315
Boundary value problem 313
Box dimension 210 211
Branching systems 265
Brownian motion 5 15 39 213—215 260
Brownian motion, fractional 71 203—207 269
Canonical distributions 18 19
Cantor sets 38—47
Cardiovascular system 323
Central limit theorem 5 226
Central limit theorem, generalization of 226 306—309
Chain condition 215—219 257
Chaos 2 184 207 302
Chaos, weak and strong 324
Characteristic creep time 243
Characteristic function 196 204 209
Characteristic function, Levy 219—202 308
Chemical kinetics 184
Classical mechanics 7—14 37
Closure 123
Clustering 224 226 304 309
Coarse-graining 186 305
Colored noise 208—210
Complex, moduli 238—240
Complex, phenomena 115 183 212 269 301
Complex, system 184
Composition rule 57
Constant functions 79
Constitutive equations 234
Constitutive equations, fractional 253
Constraints 9
Continuity 75
Continuous time random walk, CTRW 276
Convolution 82 138
Convolution, generalized 150
Convolution, of generalized exponentials 174
Correlation function 27 53 189 277
Correlation function, coefficient 53 212
Correlation function, inverse power law 1908 208 284
Correlation, length 304
Correlation, power law 211—214
creep 235 244
Creep, compliance 238 245 246
Dash pots 233 252 173
Deformation 234—240
density 125—127
Density matrix 275 322
Difference equations 200—203 207
Diffusion, anomalous 200 218
Diffusion, coefficient 189
Diffusion, Einstein 132
Diffusion, equation 151 175 217 260
Diffusion, ordinary and anomalous 186 190 223
Diffusive packet 276
Dimension, similarity 41
Dimension, similarity, complex 49
Dimension, similarity, fractal 42—47
Dimension, similarity, of trail 52
Dirac delta function 123 142—146 216 277 323
Dirac delta function, derivative of 145
Dirac delta function, fractional derivative of 145
Dirac delta function, impulse function 142
Dirac delta function, integral representation 144
Dirac delta function, series representation 143
Disordered media 301
Displacement 188
Dissipation 286
DNA sequences 46 191 269
Dynamical, systems, nonlinear 185
Dynamical, systems, nonlinear, variables 223
Dynamics 76 175 169 183
Ecology 198
Economics 184
Eigenfunction expansion 132
Eigenfunction expansion, fractional 312—315
Eigenvalues 176
Eigenvectors 176
Einstein process 310
Elastic, rod 129
Energy, mechanical 9
Energy, mechanical, barrier 278
Energy, mechanical, elastic 125
Enhanced diffusion 302
Equation of motion, fractional 271
Equilibrium 186
Equilibrium, statistical mechanics 315
Euclid 3
Euler relations 245
Euler relations, generalized 107
Euler — Lagrange equations 8—12
Exiton transport 276
Expansion coefficients 314
Exponential, generalized 88—108
Exponential, generalized, fractional 89
Exponential, generalized, generalized complex 97—99
Exponential, generalized, waves 129
Extremal path 8
extreme values 212
Feynman path integral 262
First-passage time 303
First-passage time, distribution 309—312
Fixed point 307—309
Fluctuations 200 207
Fluctuations, in magnetization 305
Fluctuations, in time series 211
Fokker — Planck equation 186 215—218 223 269 273 283
Fokker — Planck equation, fractional 312—319
force 237
Forces 9
Fourier amplitudes, fractional derivatives 136
Fourier series 119—124
Fourier series, coefficients 121—123
Fourier series, generalized 119
Fourier transforms 119—124 239
Fourier transforms, derivatives of function 134
Fourier transforms, fractional 119—154
Fourier transforms, generalized 135 147—150
Fourier transforms, inverse 148
Fourier — Laplace transforms 195—200
Fox, transforms 249 254 288
Fox, transforms, functions 321
Fractal, data set 212
Fractal, dimensions 40 212—214 227
Fractal, functions 3 4
Fractal, measure of 191
Fractal, media 119
Fractal, models 39
Fractal, statistics 23
Fractal, stochastic process 203
Fractal, trees 46
Fractal, wave propagation 303
Fractional 183—232
Fractional, Brownian motion 203—207 210
Fractional, calculus 31 32 200 233
Fractional, derivatives 77—88
Fractional, differential equations 31 176—179 247 253—257
Fractional, diffusion 303
Fractional, diffusion equation 274 319—323
Fractional, diffusion equation (FDE) 303 304
Fractional, exponential 243
Fractional, Laplace transforms 155—182
Fractional, Levy motion 321
Fractional, memory 244—246
Fractional, operators 54—64 264
Fractional, relaxation 246—257 278—282
Fractional, rheology 233—268
Fractional, series representation 54—56
Functionals 257
Functions, generalized 115
Functions, generalized, analytic 156
Galileo 1
Gauss, distribution 186 203 227 258—261 273 310
Gauss, statistics 204 269
Generalized Langevin equation 18
Generalized Weierstrass function (GWF) 4 47—54
Generalized Weierstrass function (GWF), fracal dimension 69 70
graphs 208
Green’s function, for harmonic oscillator 158
Green’s function, for relaxation 243 248
Green’s function, fractional 175—179 288
Green’s function, free-space 130
Hamilton — Jacobi theory 8
Hamiltonian dynamics 7 12—20 75 185 305
Hamilton’s principle 10 12—14
Harmonic oscillator, dissipative 277 278
Harmonic oscillator, driven 157
Harmonic oscillator, inhomogeneous 102—105
Harmonic oscillator, wave field 129
Heat bath, oscillators 16—20
Heat bath, oscillators, fractional 315—319
Heat equation 132
Helmholtz equation 130
Heredity 235
Hermite polynomial 316
Heterogeneity 173 212 224
Homogeneity 224
Hooke’s law 126 235—248 244
Human lung 49
Hurst exponent 192
Huygen’s principle 142
Hydrodynamics 233
Hyperbolic functions, generalized 108
Hyperbolic partial differential equation 282
Hyperbolic random variables 227
Index of refraction 131
Infinitely divisible 262—266
Infinitesimal generator 111
Initial conditions, in fractional equation 247
Initial conditions, sensitive dependence on 185
Integral equation 241—244
Intermittency 203
Intervals of the GFW (IGFW) 65—70
Inverse power-law, memory 26—28 186 278
Inverse power-law, relaxation 76 246 251
Inverse power-law, wave equation 129
Ising model 304
Islands of stability 324
Ito calculus 21
Jump rate 278
Kelvin, model 137 238
Kernel, inverse power law 206
Koch snowflake 45
Kohlrausch — Williams — Watts Law 250
Kolmogorov — Arnold — Moser, KAM theory 14 38 185
Labyrinth 301
Lagrange 1
Langevin equation 5 14—22
Langevin equation, fractional 269—275 283—295
Langevin equation, with Levy fluctuations 221 222
Laplace transform 155
Laplace transform, inverse 155
Laplace transform, of fractional derivatives 160—163
Laplace transform, of generalized functions 163—166
Laplace transform, solution to fractional differential equations 247—257 253—257
Laplace transform, solutions to differential equations 166—168
Laplace — Mellin transform 321
Leibniz rule 83
Leibniz rule, generalized 83—66
Levy path integral 262—264
Levy, statistics 5 304—309 319
Levy, statistics, distribution 186 310—312 323
Levy, statistics, flights 312
Levy, statistics, fluctuations 221 222
Levy, statistics, one-sided distribution 199 311
Linear physics 1
Logarithm, generalized 92 93
Logarithm, generalized, derivative of 108
Long-range coupling 323
Long-term memory 323
Longitudianal mode 129
Macromolecules 257
magnetization 304
Mandelbrot 3 37
Markov, approximation 24
Markov, process 221 273 283
Master equation 192—194 275
Master equation, continuous 283—286
Master equation, generalized 275
Maxwell, model 236—239
Mean-square displacement, fractional 292—294
Mellin transforms 249 254
Memory, inverse power law 186
Memory, kernels 19 20 275—282
Memory, long-time 200 269
Metallurgy 233
Mittag — Leffler, function 29 30 177 243 250 252 269 287
Mittag — Leffler, series solution 255 312—315
Mode amplitude 128
Molecular chain 277
Moment generating function 196
Moments 322
Myths 183
Nerve growth 269
Neumann series 242
Newton 2 235 244
Noise 184
Non — Debye relaxation 246
Non — Markovian statistics 273
Non — Markovian statistics, process 275
Non-analytic functions 2
Non-differentiability 54
Non-differentiability, phenomena 200
Non-integrable systems 185
Nonlinear, dynamics 184
Nonlinear, phenomena 284
Nonlinear, physics 2
Nutting’s Law 251
Order 81
Ornstein — Uhlenbeck process 20 269 287 282 317
Oscillator, stochastic 315—319
Parametric derivatives, fractional 109—114
Parseval’s theorem 150
Path integrals 257—264
Pausing time probability 193
Persistent process 302
Phase space equations 221
Phase transitions 76 306
Ðåêëàìà