Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physics of Fractal Operators

Àâòîðû: West B.J., Bologna M., Grigolini P.

Àííîòàöèÿ:

This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 354

Äîáàâëåíà â êàòàëîã: 13.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
action      12
Activation energy      278
Aggregation      307
Anagram      235
Anisotropy      173
Anomalous diffusion      301—304
Anomalous diffusion, stochastic oscillator      319
Ant      301
Antipersistent process      302
Applied strain      241
Applied stress      241
Arrhenius form      278
Atomists      75
Autocorrelation function      289—295
Average      196
Average, of displacement      197 317
Basin of attraction      286
Bernoulli sequence binomial, theorem      201
Binomial, coefficient      201
biology      184
Biomedical phenomena      265
Boltzmann      3 38 75 214 244 292
Boltzmann, distribution      323
Boson      315
Boundary value problem      313
Box dimension      210 211
Branching systems      265
Brownian motion      5 15 39 213—215 260
Brownian motion, fractional      71 203—207 269
Canonical distributions      18 19
Cantor sets      38—47
Cardiovascular system      323
Central limit theorem      5 226
Central limit theorem, generalization of      226 306—309
Chain condition      215—219 257
Chaos      2 184 207 302
Chaos, weak and strong      324
Characteristic creep time      243
Characteristic function      196 204 209
Characteristic function, Levy      219—202 308
Chemical kinetics      184
Classical mechanics      7—14 37
Closure      123
Clustering      224 226 304 309
Coarse-graining      186 305
Colored noise      208—210
Complex, moduli      238—240
Complex, phenomena      115 183 212 269 301
Complex, system      184
Composition rule      57
Constant functions      79
Constitutive equations      234
Constitutive equations, fractional      253
Constraints      9
Continuity      75
Continuous time random walk, CTRW      276
Convolution      82 138
Convolution, generalized      150
Convolution, of generalized exponentials      174
Correlation function      27 53 189 277
Correlation function, coefficient      53 212
Correlation function, inverse power law      1908 208 284
Correlation, length      304
Correlation, power law      211—214
creep      235 244
Creep, compliance      238 245 246
Dash pots      233 252 173
Deformation      234—240
density      125—127
Density matrix      275 322
Difference equations      200—203 207
Diffusion, anomalous      200 218
Diffusion, coefficient      189
Diffusion, Einstein      132
Diffusion, equation      151 175 217 260
Diffusion, ordinary and anomalous      186 190 223
Diffusive packet      276
Dimension, similarity      41
Dimension, similarity, complex      49
Dimension, similarity, fractal      42—47
Dimension, similarity, of trail      52
Dirac delta function      123 142—146 216 277 323
Dirac delta function, derivative of      145
Dirac delta function, fractional derivative of      145
Dirac delta function, impulse function      142
Dirac delta function, integral representation      144
Dirac delta function, series representation      143
Disordered media      301
Displacement      188
Dissipation      286
DNA sequences      46 191 269
Dynamical, systems, nonlinear      185
Dynamical, systems, nonlinear, variables      223
Dynamics      76 175 169 183
Ecology      198
Economics      184
Eigenfunction expansion      132
Eigenfunction expansion, fractional      312—315
Eigenvalues      176
Eigenvectors      176
Einstein process      310
Elastic, rod      129
Energy, mechanical      9
Energy, mechanical, barrier      278
Energy, mechanical, elastic      125
Enhanced diffusion      302
Equation of motion, fractional      271
Equilibrium      186
Equilibrium, statistical mechanics      315
Euclid      3
Euler relations      245
Euler relations, generalized      107
Euler — Lagrange equations      8—12
Exiton transport      276
Expansion coefficients      314
Exponential, generalized      88—108
Exponential, generalized, fractional      89
Exponential, generalized, generalized complex      97—99
Exponential, generalized, waves      129
Extremal path      8
extreme values      212
Feynman path integral      262
First-passage time      303
First-passage time, distribution      309—312
Fixed point      307—309
Fluctuations      200 207
Fluctuations, in magnetization      305
Fluctuations, in time series      211
Fokker — Planck equation      186 215—218 223 269 273 283
Fokker — Planck equation, fractional      312—319
force      237
Forces      9
Fourier amplitudes, fractional derivatives      136
Fourier series      119—124
Fourier series, coefficients      121—123
Fourier series, generalized      119
Fourier transforms      119—124 239
Fourier transforms, derivatives of function      134
Fourier transforms, fractional      119—154
Fourier transforms, generalized      135 147—150
Fourier transforms, inverse      148
Fourier — Laplace transforms      195—200
Fox, transforms      249 254 288
Fox, transforms, functions      321
Fractal, data set      212
Fractal, dimensions      40 212—214 227
Fractal, functions      3 4
Fractal, measure of      191
Fractal, media      119
Fractal, models      39
Fractal, statistics      23
Fractal, stochastic process      203
Fractal, trees      46
Fractal, wave propagation      303
Fractional      183—232
Fractional, Brownian motion      203—207 210
Fractional, calculus      31 32 200 233
Fractional, derivatives      77—88
Fractional, differential equations      31 176—179 247 253—257
Fractional, diffusion      303
Fractional, diffusion equation      274 319—323
Fractional, diffusion equation (FDE)      303 304
Fractional, exponential      243
Fractional, Laplace transforms      155—182
Fractional, Levy motion      321
Fractional, memory      244—246
Fractional, operators      54—64 264
Fractional, relaxation      246—257 278—282
Fractional, rheology      233—268
Fractional, series representation      54—56
Functionals      257
Functions, generalized      115
Functions, generalized, analytic      156
Galileo      1
Gauss, distribution      186 203 227 258—261 273 310
Gauss, statistics      204 269
Generalized Langevin equation      18
Generalized Weierstrass function (GWF)      4 47—54
Generalized Weierstrass function (GWF), fracal dimension      69 70
graphs      208
Green’s function, for harmonic oscillator      158
Green’s function, for relaxation      243 248
Green’s function, fractional      175—179 288
Green’s function, free-space      130
Hamilton — Jacobi theory      8
Hamiltonian dynamics      7 12—20 75 185 305
Hamilton’s principle      10 12—14
Harmonic oscillator, dissipative      277 278
Harmonic oscillator, driven      157
Harmonic oscillator, inhomogeneous      102—105
Harmonic oscillator, wave field      129
Heat bath, oscillators      16—20
Heat bath, oscillators, fractional      315—319
Heat equation      132
Helmholtz equation      130
Heredity      235
Hermite polynomial      316
Heterogeneity      173 212 224
Homogeneity      224
Hooke’s law      126 235—248 244
Human lung      49
Hurst exponent      192
Huygen’s principle      142
Hydrodynamics      233
Hyperbolic functions, generalized      108
Hyperbolic partial differential equation      282
Hyperbolic random variables      227
Index of refraction      131
Infinitely divisible      262—266
Infinitesimal generator      111
Initial conditions, in fractional equation      247
Initial conditions, sensitive dependence on      185
Integral equation      241—244
Intermittency      203
Intervals of the GFW (IGFW)      65—70
Inverse power-law, memory      26—28 186 278
Inverse power-law, relaxation      76 246 251
Inverse power-law, wave equation      129
Ising model      304
Islands of stability      324
Ito calculus      21
Jump rate      278
Kelvin, model      137 238
Kernel, inverse power law      206
Koch snowflake      45
Kohlrausch — Williams — Watts Law      250
Kolmogorov — Arnold — Moser, KAM theory      14 38 185
Labyrinth      301
Lagrange      1
Langevin equation      5 14—22
Langevin equation, fractional      269—275 283—295
Langevin equation, with Levy fluctuations      221 222
Laplace transform      155
Laplace transform, inverse      155
Laplace transform, of fractional derivatives      160—163
Laplace transform, of generalized functions      163—166
Laplace transform, solution to fractional differential equations      247—257 253—257
Laplace transform, solutions to differential equations      166—168
Laplace — Mellin transform      321
Leibniz rule      83
Leibniz rule, generalized      83—66
Levy path integral      262—264
Levy, statistics      5 304—309 319
Levy, statistics, distribution      186 310—312 323
Levy, statistics, flights      312
Levy, statistics, fluctuations      221 222
Levy, statistics, one-sided distribution      199 311
Linear physics      1
Logarithm, generalized      92 93
Logarithm, generalized, derivative of      108
Long-range coupling      323
Long-term memory      323
Longitudianal mode      129
Macromolecules      257
magnetization      304
Mandelbrot      3 37
Markov, approximation      24
Markov, process      221 273 283
Master equation      192—194 275
Master equation, continuous      283—286
Master equation, generalized      275
Maxwell, model      236—239
Mean-square displacement, fractional      292—294
Mellin transforms      249 254
Memory, inverse power law      186
Memory, kernels      19 20 275—282
Memory, long-time      200 269
Metallurgy      233
Mittag — Leffler, function      29 30 177 243 250 252 269 287
Mittag — Leffler, series solution      255 312—315
Mode amplitude      128
Molecular chain      277
Moment generating function      196
Moments      322
Myths      183
Nerve growth      269
Neumann series      242
Newton      2 235 244
Noise      184
Non — Debye relaxation      246
Non — Markovian statistics      273
Non — Markovian statistics, process      275
Non-analytic functions      2
Non-differentiability      54
Non-differentiability, phenomena      200
Non-integrable systems      185
Nonlinear, dynamics      184
Nonlinear, phenomena      284
Nonlinear, physics      2
Nutting’s Law      251
Order      81
Ornstein — Uhlenbeck process      20 269 287 282 317
Oscillator, stochastic      315—319
Parametric derivatives, fractional      109—114
Parseval’s theorem      150
Path integrals      257—264
Pausing time probability      193
Persistent process      302
Phase space equations      221
Phase transitions      76 306
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå