Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Physics of Fractal Operators

Авторы: West B.J., Bologna M., Grigolini P.

Аннотация:

This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 354

Добавлена в каталог: 13.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Phonon      315
Photon      315
Photosynthetic unit      276
Plastic      234
Polycrystalline materials      301
Polymer      244
pore sizes      226
Potential      260—262
Predictable      187
Principle of superposition      120 132
probability density      215—222
Probability density, infinitely divisible      219
Propagation, linear      119
Propagation-transport equation      309—319
Propagation-transport equation, fractional      319—323
Quadratic map      184
Quantum oscillators      315
Ractional, stochastic oscillator      315—319
Random activation energy model (RAEM)      278—280
Random fractal      279
Random walk, anti- persistent      191
Random walk, fractional      269
Random walk, lattice      192
Random walk, ordinary      186—192 278
Random walk, persistent      191 203
Random, forces      15—20 221
Random, variable      187
Randomness      183
Rate equation      93
Rate equation, fractional      246—248
Rate equation, generalized      94
Rate equation, inhomogeneous      94—975
Relaxation      76 244
Relaxation, modulus      238
Relaxation, stress      77 245
Renormalization group relation      48 303—309
Renormalization group relation, assumption      305 323
Resolvent, kernel      243
Resolvent, operator      242
Rheology, fractal      179
Riccati equation      265
Richardson’s law      302
Riemann — Liouville fractional operators      59—64
Riesz potential      221 264 285
Scaling      12 301 305
Scaling, index      49
Scaling, law      223
Scaling, Levy      219
Scaling, of IGWF      68—69
Scattering, multiple      151
Self-affine      223 309
Self-aggregating      185
Self-organization      183
Self-similar      223
Series, of fractional derivative      85—87
Series, representation of function      84
shift operators      200—203
Sojourn time      286
Solid mechanics      235
Spectrum, inverse power law      203 212—214 269
Spectrum, white noise      202
Standard model      233 240—244
Standard model, generalization      253—257
Stationarity      206
Statistical fluctuations      323
Statistical mechanics, nonordinary      28
Statistical mechanics, ordinary      27
Stirling’s approximation      202
Stochastic, processes, differential equation      189
Stochastic, processes, fractal      72 203
strain      234—257
Strain, relaxation      235
Strange Attractor      186
Stratonovich calculus      22
Stress      234—257
Stress relaxation function      254
Stress, relaxation      239 256
Stress-strain relation      236 245 275 269
Stretched exponential      251 256 321
Superposition, fractal functions      152
Systems theory      185
Tauberian theorem      98
Telegrapher’s equation      151 276 282
Temperature, scaling      280—282 304
Temporal fractal      46
Theorems      80 158 171
Thermal, equilibrium      318
Thermal, fluctuations      286
Thermodynamics      280 309
Time series, fractal      207—214
Time series, random      184
Trails      208
Trajectories      259—264 324
Trans — Atlantic cable      276
Transition, inverse power law      302
Transition, probability      193
Transition, times      195
Transport equation      281
Transport, linear      119
Transverse mode      129
Trigonometric functions, cosine      99—102
Trigonometric functions, generalized      99—107 129
Trigonometric functions, sine      102—105
Turbulence      4 76 283
Turbulence, diffusion      302
Turbulence, fluctuations      47
Turnstils      258
Two-point correlation      271 272
Two-point probability density      309
Two-state random process      283
Uncertainty      184
Universality      309
Unpredictability      184
Variance      188
Variance, fractal time series      271—273
Variance, of displacement      197 317
Variance, of time series      209
Variance, velocity      287—292
Variation      8
Viscoelastic materials      239
Viscoelasticity      179 234—257
Waiting time, distribution      195 279
Waiting time, inverse power law      195—200
Waiting time, probability      193—195
Wave equation, fractal propagation      303 312—315
Wave equation, fractional      322
Wave equation, inhomogeneous      129—131
Wave equation, linear      127 128 151 175
Weierstrass function      4 39 120
Weyl, fractional integral      138
Weyl, fractional operators      137—142
Weyl, generalized Fourier series      137
White noise      203
Wiener path integral      258—262
Wiener process      205 269
Young’s modulus      235
Zener model      252
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте