| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kharazishvili A.B. — Strange functions in real analysis | |
| Nagel R. — One-parameter semigroups of positive operators | 13, 62, 94, 105, 403 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 79 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 476 |
| Rudin W. — Fourier Analysis on Groups | 260 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 126 |
| Gray R.M. — Probability, Random Processes and Ergodic Properties | 53, 102 |
| Rudin W. — Principles of Mathematical Analysis | 332 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 39 |
| Shorack G.R. — Probability for statisticians | 104, 174 |
| Chung T.J. — Computational fluid dynamics | 255, 619 |
| Zinn-Justin J. — Quantum field theory and critical phenomena | 31 |
| Evans L.C. — Partial Differential Equations | 636 |
| Wall H.S. — Analytic Theory of Continued Fractions | 215 |
| Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 150, 158—168 |
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 205 |
| Gustafsson F. — Adaptive filtering and change detection | 453 |
| Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 84—93 |
| Heyde C.C. — Quasi-likelihood and its application: a general approach to optimal parameter estimation | 13, 44 |
| Lee J.M. — Differential and Physical Geometry | 15, 618 |
| Seebach J.A., Steen L.A. — Counterexamples in Topology | 64 |
| Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation | 38n, 48 |
| Majid S. — Foundations of Quantum Group Theory | 30, 76, 151, 194, 207, 217—219, 244 |
| Kuttler K. — Introduction to linear algebra for mathematicians | 237 |
| Handscomb D.C. — Methods of numerical approximation | 177 |
| Roberts A.W., Varberg D.E. — Convex Functions | 51 |
| Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 533, 534, 538, 539, 548, 549, 569 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 464 |
| Rudin W. — Real and Complex Analysis | 76, 332 |
| de Branges L., Rovnyak J. — Square summable power series | 8 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 352 |
| O'Malley R.E. — Introduction to Singular Perturbations | 60 |
| Matousek J. — Lectures on Discrete Geometry (some chapters) | 333 |
| Wayne C.E. — Seminar on Hamilton PDE | 40 |
| Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 12ff |
| Springer G. — Introduction to Riemann Surfaces | 178 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 464 I |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 19, 263 |
| Lauwerier H.A. — Calculus of variations in mathematical physics | 44—48 |
| Benson D. — Mathematics and music | 399 |
| Parr R., Yang W. — Density-functional theory of atoms and molecules | 20, 46, 259 |
| Topiwala P.N. — Wavelet Image and Video Compression | 20 |
| Helgaker T., Jorgensen P., Olsen J. — Molecular Electronic-Structure Theory. Part 2 | 202 |
| Opechowski W. — Crystallographic and metacrystallographic groups | N21.2 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 172 |
| Douglas R.G. — Banach algebra techniques in operator theory | 63—80, 66 |
| Loeve M. — Probability Theory (part 2) | 80 |
| Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 76, 116, 117, 147 |
| Debnath L. — Nonlinear water waves | 199, 464 |
| Birman M.S., Solomyak M.Z. — Spectral Theory of Self-Adjoint Operators in Hilbert Space | 19 |
| Bochner S., Chandrasekharan K. — Fourier Transforms | p.104 |
| Adams R.A. — Sobolev Spaces | 5 |
| Heikkila S., Lakshmikantham V. — Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 458 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 56 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 93 |
| Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 366, 392—394 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 393, 394, 399, 400, 401, 405, 412, 515, 516 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 656 |
| Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | 116, 240, 322 |
| Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 109, 218 |
| Lam Y. — Geometric Process and Its Applications | 64 |
| Sepanski R.M. — Compact Lie Groups | 55 |
| Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains | 15 O—2.7(8) |
| Bogachev V.I. — Measure Theory Vol.1 | 255 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 8, 9, 20, 21, 197, 437, 579, 588, 589 |
| Ruppert W. — Compact Semitopological Semigroups: An Intrinsic Theory | 166 |
| Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 15 |
| Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 42 |
| Monk P. — Finite Element Methods for Maxwell's Equations | 16 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 116 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 589 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 196 |
| Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 21, 22 |
| Lam T.Y. — A first course in noncommutative ring theory | 174 |
| Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 629 |
| Cappe O., Ryden T., Moulines E. — Inference in Hidden Markov Models | 612 |
| Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 6, 206 |
| Resnick S.I. — A probability path | 181, 334 |
| Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 114 |
| Araki H. — Mathematical Theory of Quantum Fields | 193 |
| Hensley D. — Continued Fractions | 168, 181, 189 |
| Gohberg I., Goldberg S. — Basic Operator Theory | 9 |
| Cao Z.-Q., Kim K.H., Roush F.W. — Incline algebra and applications | 103 |
| Krantz S.G. — Function Theory of Several Complex Variables | 50, 176 |
| Loeve M. — Probability Theory (part 1) | 80 |
| Ash R.B. — Information theory | 250, 262 ff. |
| Yandell B. — The Honors Class: Hilbert's Problems and Their Solvers | 4, 17, 149—150, 160 |
| Dugunji J. — Topology | 192 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 36 |
| Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 31 |
| Greiner W. — Quantum mechanics. An introduction | 42, 88, 423 |
| Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 9 |
| Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 180 |
| Rachev S.T. — Probability Metrics and the Stability of Stochastic Models | 372 |
| Berberian S.K. — Fundamentals of Real Analysis | 345 |
| Thaller B. — Visual quantum mechanics | 17, 21—25 |
| Shankar R. — Basic Training In Mathematics | 278 |
| Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 68, 116—118, 124, 128, 184, 326 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1074, 1082, 1088, 1091—1095, 1159 |
| Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 171—172, 179, 218 |
| Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 81, 94, 104, 198 |
| Geroch R. — Mathematical physics | 277 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 39 |
| Suykens J.A.K., Horvath G., Basu S. — Advances in learning theory: methods, models and applications | 30 |
| Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 26 |
| Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 185 |
| Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 13, 444 |
| Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 46—49, 108, 116, 217, 293, 321 |
| Royden H.L. — Real Analysis | 210 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $36^1$ |
| Zagoskin A.M. — Quantum theory of many-body systems | 33 |
| Eschrig H. — The Fundamentals of Density Functional Theory | 13, 116 |
| Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 115, 117, 129, 139, 141, 142, 143, 144, 165 |
| Glasko V. — Inverse Problems of Mathematical Physics | 63—65 |
| Rudin W. — Functional analysis | 293 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 1623, 1635, 1637, 1672 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 22, 26 |
| Antman S.S. — Nonlinear Problems of Elasticity | 667 |
| Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 240 |
| Griffits D.J. — Introduction to quantum mechanics | 100—101 |
| Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 33 |
| Royden H.L. — Real Analysis | 210 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 330—334 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1074, 1082, 1088, 1091—1095, 1159 |
| Lang S. — Real Analysis | 159 |
| Galindo A., Pascual P. — Quantum Mechanics Two | I 37, 39, 347 |
| Polkinghorne J.C. — The quantum world | 23, 94 |
| Dirac P.A.M. — The Principles of Quantum Mechanics | 40 |
| Katayama T., Sugimoto S. — Statistical Methods in Control and Signal Processing | 9 |
| Mukamel S. — Principles of nonlinear spectroscopy | 76, 116, 117, 147 |
| Taylor J.C. — An Introduction to Measure and Probability | 154, 216 |
| Kakosyan A.V., Klebanov L.B., Melamed J.A. — Characterization of Distributions by the Method of Intensively Monotone Operators | 133 |
| Shiryaev A.N. — Probability | 262 |
| Jahne B. — Digital Image Processing | 62 |
| Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 113 |
| Braunstein S.L. — Quantum computing | 6, 16, 101, 119, 212, 122, 128, 153, 154, 155, 167, 184, 205, 206, 216, 226, 229, 230, 231, 235, 244, 253, 254, 261, 262, 273, 282 |
| Rudin W. — Real and complex analysis | 77 |
| Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 446, 486, 489 |
| Kress R., Gehring F.W. — Numerical Analysis | 40 |
| Dieudonne J. — Foundation of Modern Analysis | 6.2 |
| Gruenberg K.W. — Linear Geometry | 146 |
| Duffie D. — Security Markets. Stochastic Models | 63 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | ix, 173, 295 |
| Yam T.Y. — Lectures on Modules and Rings | 261, 265 |
| Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 2 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 189 |
| Blyth T.S., Robertson E.F. — Further Linear Algebra | 14 |
| Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 5, 61 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 263 |
| Nagaosa N. — Quantum field theory in condensed matter physics | 2 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1074, 1082, 1088, 1091—1095, 1159 |
| Simon B. — Representations of Finite and Compact Groups | 22 |
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 70 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 79 |
| Weir A.J. — Lebesgue Integration and Measure | 221—222 |
| Bogachev V.I. — Measure Theory Vol.2 | I: 255 |
| Strichartz R.S. — The way of analysis | 355, 377, 673 |
| Lebowitz J.L., Montroll E.W. — Nonequilibrium phenomena I. The boltzmann equation | 60, 68, 72 |
| Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 278, 290 |
| Schechter M. — Spectra of partial differential operators | 4 |
| Strang G. — Linear Algebra and Its Applications | 177 |
| Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 19, 21, 23, 24, 28, 30, 31, 33, 36, 37, 39, 66, 165 |
| Köthe G. — Topological vector spaces I | 23 |
| Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 218, 240 |
| Hannan E. J. — Multiple time series | 497—505 |
| Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 149 |
| Dirac P.A.M. — The Principles of Quantum Mechanics, Vol. 27 | 40 |
| Kirillov A.A. — Elements of the Theory of Representations | 37 |
| Galindo A., Pascual P. — Quantum Mechanics One | 37, 39, 347 |
| Rockmore D. — Stalking the Riemann Hypothesis | 171—172, 179, 218 |
| Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 399 |
| Lee T.D. — Practicle physics and introduction to field theory | 14, 25, 37 |
| Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | 4 |
| Radjavi H., Rosenthal P. — Simultaneous Triangularization | 142 |
| Hu S.-T. — Elements of real analysis | 207, 260 |
| Berinde V. — Iterative Approximation of Fixed Points | 12, 63, 69, 70, 73, 78, 114, 137, 140, 143, 145, 148, 155, 160, 188, 202, 207 |
| Young R.M. — An Introduction to Nonharmonic Fourier Series | 6, 206 |
| Cercignani C. — Theory and Application of the Boltzman Equation | 120, 128, 187, 212, 213, 320, 394, 403 |
| Tarantola A. — Inverse problem theory and methods for model parameter estimation | 117, 190, 241 |
| Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 25 |
| Elze H.-T. (ed.) — Decoherence and entropy in complex systems | 63, 120, 131, 158, 205, 218, 240, 391 |
| von Neumann J. — Continuous Geometry | 85, 283, 295 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 15—17, 19, 30, 33—44, 105, 112—114, 122—126, 240 |
| Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. — Photons and atoms: introduction to quantum electrodynamic | 89, 387 |
| Billingsley P. — Probability and Measure | 21.27, 34.13, 34.14, 35.18 |
| Bjorken J.D., Drell S.D. — Relativistic Quantum Fields | 12, 20 |
| Janich K. — Topology | 26 |
| Grimmett G., Stirzaker D. — Probability and Random Processes | 391, 540 |
| Miller W. — Symmetry Groups and Their Applications | 107, 214, 409 |
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 1210 |
| Haug H., Jauho A.-P. — Quantum kinetics in transport and optics of semiconductors | 9, 35 |
| Avery J. — Creation and Annihilation Operators | 40 |
| Stahl A. — Physics with tau leptons | 40 |
| Gambini R., Pullin J. — Loops, Knots, Gauge Theories and Quantum Gravity | 57 |
| Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | (see Sobolev space) |
| Gray C.G., Gubbins K.E. — Theory of molecular fluids | 522 |
| De Finetti B. — Theory of probability (Vol. 2) | 273, 313, 314 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 141 |
| Greiner W., Reinhardt J. — Quantum electrodynamics | 22 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 135, 330 |
| Hoddeson L., Daitch V. — True Genius: The Life and Science of John Bardeen | 51 |
| Kaiser D. — A Friendly Guide to Wavelets | 23 |
| Economou E.N. — Green's Functions in Quantum Physics | 80, 341 |
| Kreyszig E. — Advanced engineering mathematics | 326 |
| Steele M.J. — Stochastic Calculus and Financial Applications | 210, 280 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 128 |
| Berezin F.A., Shubin M.A. — The Schroedinger equation | 386 |
| Shankar R. — Principles of quantum mechanics | 67 |
| Volovik G. — Artificial black holes | 89 |
| Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 69 |
| Greiner W., Mueller B. — Quantum mechanics: symmetries | 19 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 147 |
| Miller W. — Lie theory and special functions | 67, 117 |
| Kotz S., Johnson N.L. — Breakthroughs in Statistics: Volume 1: Foundations and Basic Theory | 176, 178 |
| Scully M.O., Zubairy M.S. — Quantum optics | 549 |
| Conway J.B. — A Course in Functional Analysis | 4 |
| Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 53, 58, 61 |
| Pears A.R. — Dimension theory of general spaces | 88 |
| Buhmann M.D. — Radial Basis Functions : Theory and Implementations | 108 |
| Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 74 |
| Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 240, 293, 328 |
| Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 189, see also ""In" representation", "One-particle Hilbert space", ""Out" representation" |
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 1, 23-24, 45, 55, 67, 72, 104 |
| Auletta G. — Foundations and Interpretation of Quantum Mechanics | 36, 159, 160, 164—166, 171, 173—175, 180, 199—201, 789 |
| Miller K.S. — Complex stochastic processes | 20 |
| Saxe K. — Beginning functional analysis | 23 |
| Adler S.L. — Quantum theory as emergent phenomenon | 12 |
| Christensen S.M. — Quantum theory of gravity | 286, 296, 305 |
| Trefethen L.N., Bau D. — Numerical Linear Algebra | 330, 331 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 99 |
| Dieudonne J. — Foundation of Modern Analysis | 6.2 |
| Haller G. — Chaos Near Resonance | 393 |
| Stewart G.W., Sun J. — Matrix perturbation theory | 64, 98 |
| Amit D.J. — Field theory, the renormalization group, and critical phenomena | 17 |
| Curtis M.L. — Abstract Linear Algebra | 117 |
| Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 6, 43 |
| Klyshko D.N. — Photons and nonlinear optics | 72, 76, 134, 220 |
| Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 233 |
| Gottfried K., Weisskopf V.F. — Concepts of Particle Physics | 9, 14 |
| Eringen A.C. (ed.) — Continuum physics (vol. 4) Polar and Nonlocal Field Theories | 216, 251 |
| Kaiser G. — Friendly Guide to Wavelets | 23 |
| Ya Helemskii A., West A. — Banach and locally convex algebras | 7 |
| Christensen O., Christensen K.L. — Approximation Theory: From Taylor Polynomials to Wavelets | 64 |
| Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 4 |
| De Finetti B. — Theory of Probability. A critical introductory treatment(vol. 2) | 273, 313, 314 |
| Ladyzhenskaya O.A. — The Boundary Value Problems Of Mathematical Physics | 2 |
| Rektorys K. — Survey of applicable mathematics | 1003-5 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 237 |
| Lee J.M. — Differential and physical geometry | 15, 618 |
| Grenander U. — Toeplitz Forms and Their Applications | 10 |
| Antoulas A.C. — Approximation of Large-Scale Dynamical Systems | 123 |
| Johnson C. — Numerical solution of partial differential equations by the finite element method | 34 |
| Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 84—93 |
| Adomian G. — Stochastic Systems | 300 |
| Reichenbach H. — Philosophic Foundations of Quantum Mechanics | 55 |
| Suykens J.A.K., Horvath G. — Advanced learning theory: methods, moduls and applications | 30 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 114 |
| Messiah A. — Quantum mechanics. Volume 1 | 164, 248 |
| Marks R.J.II. — The Joy of Fourier | 337, 531-533, 547, 741, 779 |
| Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 179, 184 |
| Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 139, 164, 167, 168, 499, 512 |
| Goffman C., Pedrick G. — First course in functional analysis | 166 |
| Valentine F.A. — Convex Sets | 45 |
| Hermann R. — Differential geometry and the calculus of variations | 94 |
| Kreyszig E. — Introductory functional analysis with applications | 128, 352, 459 |
| Hu S.T. — Introduction to general topology | 114 |
| Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 55 |
| Hu S.-T. — Introduction to contemporary mathematics | 167 |
| Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | 77, 216 |
| Schechter M. — Operator methods in quantum mechanics | 20 |
| Neuberger J.W. — Sobolev gradients and differential equations | 11, 15, 33, 125 |
| Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 37, 95—96, 100, 103, 105 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 154 |
| Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 440, 473, 683 |
| Aliprantis C. — Principles of real analysis | 288 |
| Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 137 |
| Kythe P.K., Puri P. — Partial differential equations and Mathematica | 109, 218 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 30 |
| Hille E. — Methods in classical and functional analysis | 69, 331, 342 |
| Dym H., McKean H.P. — Fourier Series and Integrals | 13—15, 22, 26, 29, 37 |
| Rogers C.A. — Hausdorff Measures | 134 |
| Kazarinoff N. — Analytic inequalities | 75, 77 |
| Rucker R. — Mind Tools. The Five Levels of Mathematical Reality | 32, 100, 182, 186—194 |
| Puri P.R. — Mathematical methods of quantum optics | 1 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 19—21 |
| Meijer P.H.E. — Group Theory: The Application to Quantum Mechanics | 41 |
| Lefschetz S. — Introduction to Topology | 43—44 |
| Springer G. — Introduction to Riemann Surfaces | 178 |
| Kuratowski K. — Introduction To Set Theory & Topology | 110 |
| Kemble E. C. — The fundamental principles of quantum mechanics | 114, 119n, 120 |
| Douglas R.G. — Banach algebra techniques in operator theory | 63—80, 66 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 23, 24, ($\S$10) |
| Dirac P.A.M. — The Principles of Quantum Mechanics | 40 |
| Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124 | see also "Full-Hilbert space", "Sub-Hilbert space", "Sub-sub-Hilbert space" |
| Krantz S.G. — Function theory of several complex variables | 50, 176 |
| Carroll R.W. — Mathematical physics | 325 |
| Bourgain J. — New Classes of Lp-Spaces | 4, 8 |
| Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 2, 33 |
| Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 79 |
| Ram-Mohan R. — Finite Element and Boundary Element Applications in Quantum Mechanics | 8 |
| Kuttler K.L. — Modern Analysis | 49 |
| Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics | 261 |
| Stakgold I. — Green's functions and boundary value problems | 263 |
| Greiner W., Reinhardt J. — Field quantization | 6 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 196, 235 |
| Richards P.I. — Manual of Mathematical Physics | 402, 412 |
| Tzenov S.I. — Contemporary Accelerator Physics | 221 |
| Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 303 |
| Rektorys K. (ed.) — Survey of Applicable Mathematics | 1003—1005 |
| Walters P. — An introduction to ergodic theory | 9 |
| Mathews J., Walker R.L. — Mathematical methods of physics | 162 |
| Loomis L.H., Sternberg S. — Advanced calculus | 249 |
| Lane S.M. — Mathematics, form and function | 201, 414, 437 |
| Hooft G.T. — Under the spell of the gauge principle | 0 |
| Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 116, 753 |
| Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 62 |
| Mandl F. — Quantum mechanics | 11, 60, 76—77 |
| Howes N.R — Modern Analysis and Topology | 4, 25, 34, 326, 327, 338 |
| Courant R. — Dirichlet's Principle, Confomal Mapping and Minimal Surfaces | 24 |
| Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 133, 137 |
| Gruenberg K.W., Weir A.J. — Linear Geometry | 146ff |
| Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | xiii, 6, 343 |
| Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 481 |
| Strang G. — Introduction to Applied Mathematics | 275, 287, 313 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 393, 394, 399, 400, 401, 405, 412, 515, 516 |
| Schutz B.F. — A first course in general relativity | 75 |
| Amelino-Camelia G., Kowalski-Glikman J. — Planck Scale Effects in Astrophysics and Cosmology (Lecture Notes in Physics) | 255 |
| Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 31, 33, 35, 38, 46, 321 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 327 |
| Kelley J., Namioka I. — Linear Topological Spaces | 65 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 107 |
| Laurens Jansen — Theory of Finite Groups. Applications in Physics | 189ff. |
| Miller S.S., Mocanu P.T. — Differential subordinations: theory and applications | 351 |
| Greiner W., Neise L., Stocker H. — Thermodynamics and statistical mechanics | 261 |
| Miller W. — Symmetry and Separation of Variables | 22, 23, 47, 51, 80, 128, 169, 171, 226, 231, 235, 236, 238, 240, 242 |
| Wald R.M. — General Relativity | 390 |
| Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 134 |
| Schiff L.I. — Quantum Mechanics | 163 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 281 |
| Williams C.P., Clearwater S.H. — Explorations in quantum computing | 50, 51, 52, 57, 226, 227 |
| Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 254 |
| Visconti A. — Quantum field theory. Volume 1 | 16, 20, 24, 25, 32, 41, 42, 46, 50 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 92 |
| Pan G.W. — Wavelets in Electromagnetics and Device Modeling | 9—12, 31, 233 |
| Collatz L. — Functional analysis and numerical mathematics | 56ff |
| Jahne B., Haubecker H. — Computer vision and applications | 233 |
| Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 609—610, 613, 618—619, 625, 663 |
| Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 334, II 409 |
| Vidyasagar M. — Nonlinear systems analysis | 16 |
| Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 52, 56, 61, 68, 71, 72, 79, 130, 395, 420, 452 |
| Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 3 |
| Sakurai J.J. — Modern quantum mechanics | 11 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 115 |
| Smith R. — Smart material systems: model development | 420 |
| Constantinescu F., Magyari E. — Problems in quantum mechanics | 1 |
| Good I.J. — Information, Weight of Evidence. the Singularity Between Probability Measures and Signal Detection | 83 |
| Lee A. — Mathematics Applied to Continuum Mechanics | 563 |
| John F. — Partial Differential Equations | 118, 190, 198 |
| Rodberg L.S., Thaler R.M. — Introduction to the quantum theory of scattering | see "Vector space" |
| Simeone C. — Deparametrization and Path Integral Quantization of Cosmological Models | 102, 119 |
| Crisanti A., Paladin G., Vulpiani A. — Products of random matrices in statistical physics | 121 |
| Geroch R. — Mathematical physics | 277 |
| Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 122ff |
| Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 7 |
| Breuer H.-P., Petruccione F. — The Theory of Open Quantum Systems | 59 |
| Heinonen J. — Lectures on Analysis on Metric Spaces | 8, 99 |
| Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 13—15, 22, 26, 29, 37 |
| Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 136 |
| Davis P., Hersh R. — The Mathematical Experience | 268 |
| Mitrinović D.S., Vasić P.M. — Analytic inequalities | 44, 47, 59, 65, 311 |
| Suter D. — The physics of laser-atom interactions | 84, 85, 126 |
| Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 291 |
| Kanwal R.P. — Generalized functions: Theory and technique | 397 |
| Cercignani C. — Rarefied Gas Dynamics | 30 |
| Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 120, 121 |
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 191 |
| Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 183 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 51, 108 |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 34 |
| Whyburn G.T. — American mathematical society colloquium publications. Volume XXVIII | 6 |
| Sommerfeld A. — Partial Differential Equations in Physics | 179, 184 |
| Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 230, 233, 235 |
| Cheney W. — Analysis for Applied Mathematics | 61, 63 |
| Unknown A. — Solid State Physics | 393—394 |
| Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 62, 63, 68, 72, 81, 84, 399, 411 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 30 |
| Moiseiwitsch B.L. — Integral Equations | 69, 79 |
| Mathews J., Walker R.L. — Mathematical Methods of Physics | 162 |
| Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 6, 43 |
| Geroch R. — Mathematical physics | 277 |
| Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 113—116 |
| Kline M. — Mathematical thought from ancient to modern times | 1074, 1082, 1088, 1091—1095, 1159 |
| Chui C.K. — Wavelets: a mathematical tool for signal processing | 125, 127, 140 |
| Dennery P., Krzywicki A. — Mathematics for Physicists | 196—197, see also "Function space", "$L^{2}_{w}(a,\ b)$ space" |
| Leader S. — The Kurzweil-Henstock integral and its differentials | 328 |
| Eves H. — Mathematical Circles Adieu | 132 |
| Bruss D. (ed.), Leuchs G. (ed.) — Lectures on Quantum Information | 128 |
| Aharonov Y., Rohrlich D. — Quantum Paradoxes: Quantum Theory for the Perplexed | 31, 38, 88, 147, 164, 169, 189, 200, 207, 233, 240, 245 |
| Proskuryakov I.V. — Problems in Linear Algebra | 283 |
| Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 100 |
| Liboff R.L. — Introductory quantum mechanics | 94ff, 334, 341p |
| Georgescu A. — Asymptotic Treatment of Differential Equations (Applied Mathematics) | 235 |
| D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 40, 33—61, 70, 89, 102, 143 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "space, Hilbert" |
| De Witt L. Sumners — New Scientific Applications of Geometry and Topology (Proceedings of Symposia in Applied Mathematics, V. 45) | 140, 142 |