Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ruppert W. — Compact Semitopological Semigroups: An Intrinsic Theory
Ruppert W. — Compact Semitopological Semigroups: An Intrinsic Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Compact Semitopological Semigroups: An Intrinsic Theory

Автор: Ruppert W.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1984

Количество страниц: 260

Добавлена в каталог: 14.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\mathbb{N}$, weak almost periodic compactification of      241
$\mathbb{R}$ (=one-point compactification of $\mathbb{R}$)      1
$\mathbb{Z}$, Ellis compactification of      190
$\mathbb{Z}$, weak almost periodic compactification of      155
Abelian subsemigroup, closure of -      10
Action, affine      99
Action, distal      99
Action, effective      58 81
Action, equicontinuous      70
Action, jointly continuous      11 52—63 95
Action, left [right]      11 124
Action, minimal      57 67 95
Action, minimal, of a cone      94
Action, minimal, of a group      80 81 206
Action, minimal, of a semigroup      52—55 61 62 63 67 90 91 92 93 94 95 96
Action, minimal, of a semilattice      238 239
Action, separately continuous      11
Adjoint functor theorem      102 165
Adjunction of a zero      35 43
Adjunction of an ideal      35 121
Adjunction of an identity      9 56
Ahre      46 244
Alexander — Cech cohomology of ideal      19 20
Alexander — Cech cohomology of M-semigroups      206—211 218 219 220 222 228 229
Alexander — Cech cohomology of semilattices of groups      202 203
Alexander — Cech cohomology, not concentrated on M(S)      2 2
Alexandroff      89 244
Almost periodic compactification      102 103 104 105 115 125
Almost periodic function      113 161
Arens multiplication      165
Asplund      100 244
Automorphism of weak almost periodic compactification      123
Baire      4 47 72 92 94 240 244
Baire space      47 72 89 90 92 96 97 239
Baker      45 59 164 165 244
Banach      97 244
Band      64 65
Berglund      44 45 46 85 100 109 110 165 231 233—235 244
Betti numbers      203 206 207 210 220 229
Bicontinuous      8 57 99 170 178
Bicyclic semigroup      37 38 40 41
Boundary      80 168
Bourbaki      48 56 90 94 97 98 107 126 245
Bredon      206 207 245
Brouwer      197
Brown, G.      154 165 241 245
Brunner, N.      2 40
Burckel      44 110 245
Butcher      45 164 245
C-set      237
Cancellative      50 13 14
Cech, complete      93
Cell,semigroup on a      238
Central      22 15 162
Centric      9 45 81 130—140 162
Centrum      10 153 154 155 156
Chain      13 16 103 239
Chain, $\le_L$, $\le_R$-      16 18 41 70
Chain, maximal      13 16—18 41 64 70 96
Chernoff      99 245
Chou      164 166 245
Christensen      97 100 246
Circle,semigroup on the      74 176 204 231
Clifford      9 37 45 46 178 246
Compactification, almost periodic      102 103 104 105 115 125
Compactification, dynamical      101 113 125
Compactification, Ellis      202 10 107 113 117 164 190
Compactification, Ellis, map      101
Compactification, Ellis, semigroup      101
Compactification, Ellis, semitopological-      101
Compactification, Stone — Cech-      102 164 165
Compactification, topological-      104 103
Compactification, weak almost periodic      see weak almost periodic
Complete group      56 64 95 242
Complete lattice      15
Complete semilattice      15
Completely metrizable space (and joint continuity)      90 96
Condition (o)      200
Cone, action of a convex-      94
Confinement principle      92—94 99
Congruence      33 34
Congruence, induced by normal subsemigroup      34
Congruence, Rees      34
Connected ideals      19 32
Cup product      206
Cutpoint      173 228 236
de Leeuw      43 164 166 246
Decomposition of M-semigroups      208 212—220 229
Decomposition of weakly almost periodic function      113 161 164
Direct product      38 216 217 218 223
Directed      21 14 15
Dissipative      113 161
Distal      99
Dorroh      98 246
Dotted disc topology      87
Dunkl      165 246
Dynamical compactification      44 101 113
Eberhart      43 246
Eberlein      164 246
Eckmann      2 36
Effective action      58 81
Ellis      43 44 46 62 95 97 98 99 164 246
Ellis compactification      102 103 105 107 1 117 164 165
Ellis — Lawson, Theorem of      62 95
Enveloping semigroup      44
Euclidean neighborhood (of 1)      160 170
Euler — Poincare characteristic      206 209 211 228 236
Extension of inversion      104 1
Extension, problem      107 117—123
Extension, Rees-      34
Filtered      23 14 15
Fixed point free approach (to Ryll — Nardzewski's Theorem)      100
Flor      44 46 164 165 247
Fluchtvektor (flight vector)      164
Fort      98 247
Free compact semitopological semigroups      242
Freudental      127 188 247
Frolik      97 247
Function spaces      107—114
Furstenberg      99 247
Gierz      98
Glicksberg      43 164 166 246
Green's relations, R, L, D, I, H      9 12 40 41 54 58 59 66 130 232 234 240
Green's relations, R, L, D, I, H, are not closed      10 12
Grothendieck      110 247
Group of units      9 168 174
Group with zero      150—152 219 242
Group, semitopological, but not topological      86—89
Gysin      236
Hahn      90 247
Halmos      28 247
Hansel      98 239
Helgason      138 247
Helmer      98 248
Hewitt      127
Hilbert space      166
Hille      43 248
Hindman      165
Hochschild      132 151 158 209 210 248
Hoffmann — Jorgensen      100
Hofmann      5 40 41 44 45 46 80 85 98 109 110 171 173 231 242 243 248
Hofmann — Mostert method      171—174
Hopf      236
Hunter      231
Hurewicz      198 248
Husain      44 248
I-semigroup      75 76
Ideal, cohomology of      19
Ideal, left [right]      9 10 19—32
Ideal, maximal proper      235
Ideal, minimal      21 32 42
Ideal, two-sided      9 10 19—32 200
Idempotents      9 12—18 45 64 65 66 70 103 130 137 193 199 220 243
Idempotents, central      199 228 243
Idempotents, existence of      12 45
Idempotents, form closed set      64 200 243
Idempotents, infimum [supremum] of      15
Idempotents, maximal      13 14 18 64 95 193 201 204
Idempotents, minimal      21—26 28 29
Idempotents, number of-      155 159 163 165 210 211 229
Imbedding problems      115—123 161 242
Inside point (=intrinsic point)      171
Interchanging left and right      33
Interval semigroup      56 65 74—80 176 177 231
Inversion, continuity of, in a group      64 90 95 9
Inversion, continuity of, in a semilattice of groups      64 95
Inversion, extension of-      104 161
Irreducible action      149
Irreducible semigroup      233 234
Isbell      115 248
Isotropy group      81 124 128 129 132—140 146 193—199 209 210 212—219 228 229 243
Iwasawa decomposition      138 203 209
Jacobs      164 248
Joint continuity      8 47—100 238—240
Joint continuity and equicontinuity      47 53
Joint continuity of actions      62 66 67 95 96
Joint continuity of group multiplication      43 73 74 89 95
Joint continuity of multiplication in semigroups on subsets of IR      72—74
Joint Continuity Theorem      63 95 99
Joint Continuity Theorem, metrizable version      55 56 89 95
Joint continuity, (points of)form residual subset      48 49
Joint discontinuity.measure of      240
Junghenn      44 45 165 248
k-space      9 8
Katetov      117 248
Keimel      9 8
Kelley      17 248
Knapp      44 164 249
Koshiba      97 249
L-semigroup      186 18 194 222 228 243
Lattice      15 162 217 220 229 243
Lawson      45 62 95 97 98 99 100 230 231 238 239 249
Left continuous      8
Left group      22
Left identity      77 78 79 80
Left zero semigroup      22 28 78
Lerner      165 248
Lie groups      128 129 133—140 141—149 195
Local cross-section      193—199
Local weak cutpoint      173 228 236
Locally compact semigroup with H(1) not a topological group      98
Locally compact semigroup, one-point compactification of      35
Locally surjective      54
Lower bound of a set of idem-potents      13—18
M-semigroup      186 186—182
Madison      230 249
Magnifying elements      232
Manifolds with boundary, semigroups on-      40 80—85 96 203
Manifolds, semigroups on      126 127 168—231 237
Massey      171 249
Mautner phenomenon      166
Maximal, -subgroups      21 24—29 64 95 160 198 200 205 229 243
Maximal, almost periodic      125
Maximal, ideals      235
Maximal, idempotents      13 14 18 64 95 193 201 204
Measure algebra      43
Meet-continuous      15
Milnes      44 45 59 164 165 249
Minimal ideal      21—32 46 58 59 64 95 96 105 242
Minimal ideal, general structure theorem      24 25
Minimal ideal, joint continuity in-      24—32 50
Minimal idempotent      13 14 21 46
Minimally weakly almost periodic      166
Mislove      9 8
Mitchell      102 164 249
Monoid(=semigroup with identity) on locally connected space      174 see
Monoid(=semigroup with identity) on manifold with boundary      80—85 95 96 168—232
Monoid(=semigroup with identity), spaces forbidden for semitopological      236 237
Monothetic      241
Montgomery      43 90 96 99 126 128 189
Moore      166 250
Moran      154 165 241 245
Moriya      97 250
Mostert      5 41 45 80 85 98 168 171 173 230 248 250
Mostert — Shields method      168
Multiplicative      14
Namioka      44 45 94 98 100 244 250
Namioka's Theorem      9 8
Niemitzky plane      87
Normal quotient      34
Normal subset of a semigroup      9 10 45
One-parameter semigroup      233
One-point compactification      1 31 35 43 176 205
Opposite semigroup      33
Order relations on idempotents      12 13—18 45 58
Ordered semigroup      72 74 75
Orientable      203
P(g)      178 183 184 185 213 221 222 231
P-point      164
Paragroup      22 29 42 50
Peripheral      171 168—175 198 234 237
Peripherality concepts      230 234 235
Pinched disc topology      88
Poincare duality space      206
Pre-orders on E(S)      12 13—18 45 58
Precompact      114
Preston      37 45 46 178 244
Productibility      165
Projective space,monoid on a      219 236
Pym      164 250
Quasi-equicontinuous      70
Quotient action      61
Quotient group, weak almost periodic, compactification of      83 106 131
Quotient semigroup      34
R(G)      183 184 185 231
Ramirez      165 246
Real interval semigroup      74
Reductive semigroup      50
Rees extension      34 35>37
Rees quotient      34
Regular semigroup      153 154—160 163
Retract, ideals behaving like-      19
Right continuous      8
Right group      22 29 54
Right identity      77 78 79 80
Right topological, but not semitopological group      39 40
Right topological, but not semitopological semigroup      8 8—10 12—24 26—28 33—40 42 43 44 51 59
Right zero semigroup      22 24 78
Rim      230
Ross      127 248
Ruppert      44 45 46 99 100 125 166 231 199 250 251
Ryll — Nardzewski      6 99 100 251
Ryll — Nardzewski 's Theorem      6 64 96 99 100
Samelson      2 36
Sandwich product      22
Scott      98
Selden      43 246
Semidirect product      38 156 160 223 224 229 243
Semigroup on interval      29 56 72—80
Semigroup on manifold      126 127 168—231 237
Semigroup, bicyclic      37 38 40 41
Semigroup, bisimple      41
Semigroup, compactification      44 101
Semigroup, left[right]zero      22
Semigroup, on manifold with boundary      40 80—85 96 203
Semigroup, regular      153 154—160 163
Semigroup, right topological      8 8—10 12—24 26—28 33—40 42 43 51 59
Semigroup, semitopological      1 8 43 44
Semigroup, semitopological,with no points of joint continuity      50 51
Semigroup, topological-      1 8
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте