Авторизация
Поиск по указателям
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Stochastic Differential Equations: An Introduction With Applications
Автор: Oksendal B.
Аннотация: This edition contains detailed solutions of selected exercises. Many readers have requested this, because it makes the book more suitable for self-study. At the same time new exercises (without solutions) have been added. They have all been placed in the end of each chapter, in order to facilitate the use of this edition together with previous ones.
Several errors have been corrected and formulations have been improved. This has been made possible by the valuable comments from (in alphabetical order) Jon Bohlin, Mark Davis, Helge Holden, Patrick Jaillet, Chen Jing, Natalia Koroleva, Mario Lefebvre, Alexander Matasov, Thilo Meyer-Brandis, Keigo Osawa, Bj0rn Thunestvedt, Jan Ub0e and Yngve Willassen. I thank them all for helping to improve the book.
My thanks also go to Dina Haraldsson, who once again has performed the typing and drawn the figures with great skill.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 6-th
Год издания: 2003
Количество страниц: 363
Добавлена в каталог: 30.10.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-space 9
-Brownian motion 72
-algebra 7
-algebra, finite 17
-algebra, generated by a family of sets 8
-algebra, generated by a random variable 8
(Multi)normal distribution 13
Absolutely continuous 161
Adapted process 25
Adjoint operator 169
Admissible control 236
Admissible portfolio 265
Almost surely (a.s.) 8
American call option 298 302
American contingent T-claim 290
American option 290—298
American option price 291
American put option 296—298
American put option, perpetual 303
Analytic functions (and Brownian motion) 78 158
Arbitrage 265
Attainable claim 274
Banach space 9
Bankruptcy time 224 235
Bayes’ rule 160 (8.6.3)
Bellman principle 254
Bequest function 224 235
Bessel process 49 148
Black — Scholes equation 203
Black — Scholes formula 4 169 204 288 289 302
Borel sets, Borel -algebra 8
Borel — Cantelli lemma 17
Borrowing 247
Brownian bridge 76
Brownian motion, complex 78
Brownian motion, in 3 11—15
Brownian motion, on a Riemannian manifold 158
Brownian motion, on the ellipse 74
Brownian motion, on the unit circle 67 127
Brownian motion, on the unit sphere 157
Brownian motion, the graph of 124
Brownian motion, w.r.t.an increasing family of -algebras 72
Brownian scaling 19
Capacity 173
Carrying capacity 78
Cauchy sequence 20
Change of time 153
Change of variable in an Ito integral 156
Characteristic function 306
Characteristic operator 126
Chebychev’s Inequality 16
Claim, American 290
Claim, European 274
Closed loop control 237
Coincide in law 149
Combined Dirichlet — Poisson problem 175—178 193
Complete market 274
Complete normal linear space 20
Complete probability space 8
Complex Brownian motion 78
Conditional expectation 309—310
Conditioned Brownian motion 133
Contingent T-claim (American) 290
Contingent T-claim (European) 274
Continuation region 211 225
Continuous in mean square 40
Control, deterministic (open loop) 23
Control, feedback (closed loop) 237
Control, Markov 237
Control, optimal 236
Convolution 316
Covariance matrix 13 305
Cross-variation processes 160
Crowded environment 78
Density (of a random variable) 16
Diffusion coefficient 113
Diffusion, Dynkin 127
Diffusion, Ito 113 114
Dirichlet problem 2 177 179
Dirichlet problem (generalized) 185
Dirichlet problem (stochastic version) 181
Dirichlet — Poisson problem 175—178 193
Distribution (of a process) 11
Distribution (of a random variable) 9
Distribution function (of a random variable) 15
Doob — Dynkin lemma 8—9
Doob — Meyer decomposition 294
Drift coefficient 113
Dudley’s theorem 267
Dynkin’s formula 124 196
Eigenvalues (of the Laplacian) 198
Elementary function/process 26
Elliptic partial differential operator 175
Equivalent local martingale measure 165 268
Equivalent martingale measure 165 268 278
Estimate (linear/measurable) 89
Estimation of a parameter 101
Estimation, exact asymptotic 105 106
European call option 4 279
European contingent T-claim 274
European option 279
European option price 279 280
European put option 280
Events 8
Exact asymptotic estimation 105
Excessive function 209
Expectation 9
Explosion (of a diffusion) 68 79
Exponential martingale 55
Feedback control 237
Feller-continuity 141
Feynman — Kac formula 143 201
Filtering problem, general 2 83—85
Filtering problem, linear 85—105
Filtration 31 38
Finite-dimensional distributions (of a stochastic process) 11
First exit distribution 136
First exit time 117
Gaussian process 13
Generalized (distribution valued) process 21
Generator (of an Ito diffusion) 121 123
Geometric Brownian motion 64
Girsanov transformation 162
Girsanov’s theorem 60 159—168
Green formula 195
Green function 172 194 196
Green measure 19 194 250
Green operator 172
Gronwall inequality 70 80
h-transform (of Brownian motion) 133
Hamilton — Jacobi — Bellman (HJB) equation 238—243
Harmonic extension (w.r.t.an Ito diffusion) 128
Harmonic function (and Brownian motion) 130 158
Harmonic function (w.r.t.a diffusion) 180
Harmonic measure (of a diffusion) 120 121 135
Harmonic measure (of Brownian motion) 130
Hausdorff measure 173
Heat equation 178
Hedging portfolio 274
Hermite polynomials 38
High contact (smooth fit) principle 222 224 230
Hilbert space 9
Hitting distribution 120 121
Hunt’s condition (H) 186
Independent 9 10
Independent increments 14 22
Innovation process 86 90 91 94
Integration by parts (stochastic) 46 55
Interpolation (smoothing) 107
Irregular point 183—185 199
Iterated Ito integrals 38
Iterated logarithm (law of) 66
Ito diffusion 114
Ito integral 24—37
Ito integral; multidimensional 34 35
Ito interpretation (of a stochastic differential equation) 36 63 83
Ito isometry 26 29
Ito process 44 48
Ito representation theorem/formula 51 284
Ito’s formula 44 48
Jensen inequality 310
Kalman — Bucy filter 2 99 104
Kazarnaki condition 55
Kelly criterion 248
Kernel function 133
Killing (a diffusion) 145
Killing rate 145
Killing time 145
Kolmogorov’s backward equation 139
Kolmogorov’s continuity theorem 14
Kolmogorov’s extension theorem 11
Kolmogorov’s forward equation 168—169
Langevin equation 75
Laplace operator 3 57
Laplace transform 136
Laplace — Beltrami operator 158
Law of iterated logarithm 66
Least superharmonic majorant 208 210
Least supermeanvalued majorant 208 210
Levy’s characterization of Brownian motion 160
Levy’s theorem 159
Linear regulator problem 243
Lipschitz surface 225 315
Local martingale 132 268
Local time 58 59 73
Lyapunov equation 107
Malliavin derivative 53
Market 261
Market, complete 274
Market, normalized 261 262
Markov control 237
Markov process 116
Markov property 115
Martingale 31 33 312
Martingale convergence theorem 312
Martingale inequality 31
Martingale problem 146—147
Martingale representation theorem 49 53
Martingale, local 132
Maximum likelihood 102
Maximum principle 200
Mean square error 96
Mean value 13
Mean value property (for a diffusion) 120 121
Mean value property, classical 130
Measurable function (w.r.t.a cr-algebra) 8
Measurable sets (w.r.t.a cr-algebra) 8
Measurable space 7
Moan-reverting Ornstein — Uhlenbeck process 75
Moving average, exponentially weighted 101
Noise 1—4 21—22 63
Normal distribution 12 305—307
Normalization (of a market process) 261 262 263 267 298
Novikov condition 55 162
Numeraire 262
Observation process 84
Open loop control 237
Optimal control 236
Optimal performance 236
Optimal portfolio selection 4 246
Optimal stopping 3 205—227
Optimal stopping existence theorem 211
Optimal stopping time 205 211 214 224 225
Optimal stopping uniqueness theorem 214
Option pricing 4 279—298
Optional sampling theorem 208
Ornstein — Uhlenbeck equation/process 75
Orthogonal increments 86
Outer measure zero 8
Path (of a stochastic process) 10
Performance function 236
Perron — Wiener — Brelot solution 189
Poisson formula 200
Poisson kernel 200
Poisson problem 179
Poisson problem (generalized) 191
Poisson problem (stochastic version) 191
Polar set 172 186
Polish space 12
Population growth 1 63 78 136
Portfolio 4 246 262—267
Prediction 104
Probability measure 7
Probability space 8
Profit rate function 206 224 235
p’th variation process 19
Quadratic variation process 19 56
Radon — Nikodym derivative 161
Random time change 153
Random variable 9
Recurrent 126
Regular point 183—185 199
Replicating portfolio 274 289
Resolvent operator 141 192
Reward function 205
Riccati equation 97 99 100 103 245
Risky investment 246
Safe investment 246
Scaling (Brownian) 19
Self-financing portfolio 262 263—264
Semi-elliptic partial differential operator 175
Semi-polar set 186
Separation principle 237 246
Shift operator 119
Shortselling 247 290 303
Smoothing (interpolation) 107
Snell envelope 294
Solvency set 224
Stationary process 18
Stochastic control 4 235—252
Stochastic differential equation, definition 63
Stochastic differential equation, existence and uniqueness of solution 68
Stochastic differential equation, weak and strong solution 72
Stochastic Dirichlet problem 181
Stochastic integral 44
Stochastic Poisson problem 191
Stochastic process 10
Stopping time 57 116
Stratonovich integral 24 35—37 39 40
Stratonovich interpretation (of a stochastic differential equation) 36 64 65 66 83
Strong Feller process 188 190
Strong Markov property 116—121
Strong solution (of a stochastic differential equation) 72
Strong uniqueness (of a stochastic differential equation) 69 72
Submartingale 302 303 312
Superharmonic function 206 254
Superharmonic majorant 208
Supermartingale 132 208 268 280 294 312
Supermeanvalued function 206
Supermeanvalued majorant 208
Superreplicate 294
Support (of a diffusion) 109
Tanaka’s equation 73
Tanaka’s formula 58 59 73
Terminal conditions (in stochastic control) 251—252 257
Thin set 186
Time change formula Ito integrals 156
Time-homogeneous 114
Total variation process 19
Transient 126
Реклама