|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Bjorken J.D., Drell S.D. — Relativistic Quantum Fields |
|
|
Ïðåäìåòíûé óêàçàòåëü |
"internal," 96—99
''Strangeness'' S 106
Analytic continuation 312—317
Anomalous thresholds 235—242
Antiparticles 40
Antiunitary operator 118n.
Arbitrary graphs, generalization to, and electrical circuit analogy 220—226
Asymptotic behavior of Feynman amplitudes 364—368
Asymptotic condition 132—137
Asymptotic condition, weak 137
Bethe-Salpeter equation 292n.
Bleuler, K 68
Bloch, F. 207
Bogoliubov, N.N. 264 268
Bose fields 98 127—128
Bose-Einstein fields 214
Bose-Einstein statistics 32 44—45 52 56 58—59 124
Brown, L.M. 363
Cauchy relation 252
Causality, and Kramers-Kronig relation 210—213 226
Causality, microscopic 170
Charge conjugation 113—118
Charge parity 114
Charged scalar field 37—40
Co variance, Lorentz 20 71 74
Co variance, relativistic 62—63
Compton scattering, low-energy theorem for 357—364
Conservation laws, symmetries and 17—22
Contraction terms, graphical representation of 185—187
Contraction terms, nonvanishing 184—185
Convergence, criterion for 317—330
Coordinates, momenta and 377—378
Coulomb field 88
Coulomb gauge 86
Creation operator 32
Current distribution, classical, soft photons radiating from 202—207
Degree of divergence 317—330
Density, Hamiltonian 16 18
Density, Lagrangian 13
Differential wave propagation 3
Dirac equation 18 54—55 102 115
Dirac field 86 91—92 111 124
Dirac field, reduction formula for 159—163
Dirac field, second quantization of 44—65
Dirac matrices, spinors and 378—380
Dirac operator 89
Dirac theory 54—56 58 120
Dirac theory, dynamical calculations of pi-pi scattering using 269—278
Dirac theory, for vertex function 242—245
Dirac theory, forward pi-nucleon, axiomatic derivation of 263—269
Dirac theory, spectral representation for 151—159
Dispersion relations 210—283
Divergence, degree of 317—330
Dyson, F.J. 175 181 322
Dyson-Salam renormalization program 322
Dyson-Wick decomposition 187
Dyson-Wick expansion 185
Dyson-Wick reduction 192
Electrical circuit analogy 220—226
Electrodynamic interaction 84—88
Electrodynamics, of spin-one boson 386
Electrodynamics, of spin-zero boson 384
Electrodynamics, spinor 383
electromagnetic field 3
Electron-positron kernel 285—290
Equations, Dirac 18 54—55 102 115
Equations, Euler-Lagrange 5 14 17 19
Equations, Heisenberg 62 98
Equations, integral see “Integral equations”
Equations, Klein-Gordon 26 28 38 40 102 134
Equations, Klein-Gordon wave 13—15
Equations, Maxwell 69 71 74—75
Equations, Schroedinger 44—45 52
Euler-Lagrange equations 5 14 17 19
Fermi fields 98 127—128
Fermi-Dirac field 64—65 214
Fermi-Dirac statistics 44—46 52 59
Feynman amplitudes, asymptotic behavior of 364—368
Feynman graphs 174—175 187 189 216 231—232
Feynman graphs, rules for 381—386
Feynman propagator 41—42 63—65
Feynman propagator, for transverse photons 78—80
Feynman, R.P. 363
Field commutator 34
Field theories, local 3—5
Field theories, other formulations for 23—24
Fields, Bose 98 127—128
Fields, Bose-Einstein 214
Fields, canonical formalism and quantization procedure for 11—16
Fields, charged scalar 37—40
Fields, Coulomb 88
Fields, Dirac see “Dirac fields”
Fields, electromagnetic 3
Fields, Fermi 98 127—128
Fields, Fermi-Dirac 64—65 214
Fields, free, theory of 84
Fields, Heisenberg 91
Fields, interacting 84—128
Fields, Klein-Gordon 26—42 46 64 87n. 120 124
Fields, local 3—6
Fields, Maxwell 71 86 124
Fields, microscopic causality and measurability of 34—35
Fields, scalar, reduction formula for 146—150
Fields, wave 3
Formalism, canonical, and quantitation procedure, for fieldi 11—16
Formalism, canonical, and quantitation procedure, for particlei 5—11
Formalism, canonical, general 2—24
Formalism, canonical, quantum field 3
Forward pi-nucleon dispersion relations, axiomatic derivation of 208—200
Fourth-order charge renormaliiatlon, example of 344—357
Fredholm theory of potential scattering 275
Free fields, theory of 84
Gauges, Coulomb 86
Gauges, radiation 73
Gauss's law 71—72 86 88 91
Gell-Mann, M. 192 362
General formalism 2—24
General graph, singularities of, and Landau conditions 231—235
Generators 97
Goldberger, M.L. 192 362
Granularity 4
Graphs, arbitrary, generalization to 220—226
Graphs, Feynman 174—175 187 189 216 231—232
Graphs, Feynman, rules for 381—386
Graphs, general, singularities of 231—235
Graphs, improper 236n.
Graphs, in quantum electrodynamics, rules for 197—202
Graphs, representing contraction terms 185—187
Graphs, skeleton 293—298
Graphs, vertex, analytic properties of, in perturbation theory 216—220
Graphs, vertex, analytical structure of 235—242
Green's functions 53—54 64 220
Green's theorem 27
Gupta, S.N. 68
Hamilton's principle 5 11—12 70
Hamiltonian density 16 18 70
Hamiltonian operator 53
Heine-Borel Theorem 327
Heisenberg equations 62 98
Heisenberg fields 91
Heisenberg picture 7—8 11—12 130
Heisenberg relations 88
High-energy physics, application of Kramers-Kronig relation to 214—216
Hilbert space 12 20
Hypercharge 106
Hyperons 101
Improper 107—108
Improper symmetry 107—108
In-flelds, conitruotion of 132—137
In-flelds, conitruotion of, and out-fields 151—159
| In-flelds, conitruotion of, and out-fields, reduotion formula for photons and 163—165
In-itatei, oonitruotion of 132—137
Infrared catastrophe 202—207
Integral equationi, renormalized 309—312
Integral equationi, renormalized, for self-energy and vertex parts 290—293
Integral equationi, renormalized, for tau functions and kernel K 293—298
Interacting fields 84—128
Intermediate renormalization, analytic continuation and 312—317
Internal symmetry 20 96—99
Intrinsic parity 109 112
Invariance, displacement 88—90
Invariant commutator and propagator functions 387—390
Isotopic spin 189—192
Isotopic spin conservation 104
Isotopic spin current 100
JCP theorem 123—127
Jost, R. 357
Kall£n-Lehmann representation 227
Karplus, R. 321
Kernel K, integral equations for 293—298
Kirchhoff's laws 224 229—230 237
Klein-Gordon equation 26 28 38 40 102 134
Klein-Gordon field 26—42 46 64 87n. 120 124
Klein-Gordon theory 47 52 54 56 108
Klein-Gordon wave equation 13—15
Kramers-Kronig relation 243—244 251 362
Kramers-Kronig relation, application to high-energy physics 214—216
Kramers-Kronig relation, causality and 210—213 226
Lagrangian density 13
Lamb shift 36
Landau conditions 231—235
Lehmann, H. 23
Looal fields, description of 3—5
Lorentz 4 18 20 62 69 88—90
Lorentz covariance 20 71 74
Lorentz invariance 4 18 20 62 69 130—131
Lorentz transformation 73—74 89 94 134
Low, F. 362
Low-energy theorem for Compton scattering 357—364
Luttinger, J.M. 357
Mass counterterm 135
Maxwell equations 69 71 74—75
Maxwell field 71 86 124
Maxwell theory 74
Measurability of field and 34—35
Meson-nucleon scattering 385
Microscopic causality 4—5 170
Momenta, coordinates and 377—378
Momentum expansions 56—62 74—77 90—91
n identical particles, quantum mechanics of 44—46
Neumann, M. 321
Noether's theorem 17 22 73 84
Nordsieck, A. 207
Normal order 59
Normal ordering 31 91—93
Normal-ordered factors 126
Nucleon number 99 104
Nucleons, pi mesons and 99—101
Number operator 49
Number representation 231—232 246
Number representation, for fermions 46—54
Of strange particles 101—107
Ohm's law 224—225 248
Oscillator, simple harmonic 8
Out-fields 142—143
Out-fields, in-fields and 151—159
Out-fields, in-fields and, and reduction formula for photons 163—165
Out-states 142—143
Parity 108—113
Parity, charge 114
Parity, intrinsic 109 112
Particle interpretation, quantization and 26—32
Particles 40
Particles, n identical, quantum mechanics of 44—46
Particles, pseudoscalar 109 112
Particles, scalar 109 112
Particles, strange, symmetries of 101—107
Peaceful coexistence 85
Perturbation expansion of 178—181
Perturbation expansion of tau functions and S matrix 178—181
Perturbation theory 3 174—208
Perturbation theory, analytic properties of vertex graphs in 216—220
Phase transformation 97
Photons, in- and out-states and reduction formula for 163—165
Photons, soft, radiated from classical current distribution 202—207
Photons, spectral representation for 166—170
Photons, spin of 77—78
Photons, transverse 78—80
Pi mesons, nucleons and 99—101
Pi-nucleon scattering 189—192
Pi-pi scattering 192—197
Pi-pi scattering, dynamical calculations of, using dispersion relations 269—278
Pi-pi scattering, fourth-order, illustrated 194
Pion electromagnetic structure 278—282
Pion-nucleon scattering, application to forward 253—263
Positronium, decay of 117
Propagation, differential wave 3
Propagator, threshold singularities for 226—231
Pseudoscalar particles 109 112
Quantization procedure, canonical formalism and, for fields 11—16
Quantization procedure, canonical formalism and, for particles 5—11
Quantization, covariance of procedure for 73—74
Quantization, of electromagnetic field 68—81
Quantization, particle interpretation and 26—32
Quantization, second 52
Quantization, second, of Dirac field 44—65
Quantum electrodynamics, rulei for graphs in 107—202
Quantum mechanic I of n identical particles 44—46
Radiation gauge 73
Rayleigh scattering 362
Reduction formula, for Dirac fields, ISO 163
Reduction formula, for photons, in- and out-states and 163—165
Reduction formula, for scalar fields 146—150
Relativistic covariance 62—63
Renormalization 284—376
Renormalization constants, definition of 303—309
Renormalization group 368 376
Renormalization prescription 303—309
Renormalization theory 3
Renormalization, fourth-order charge, example of 844—357
Renormalization, intermediate 312—317
Renormalized theory, proof that it is finite 330—344
S matrix 284
S matrix and 130—172
S matrix, and proof that renormalized theory is finite 330—344
S matrix, definition and general properties of 143—146
S matrix, perturbation expansion of 178—181
S matrix, unitarity of 274
S matrix, vacuum expectation values and 130—172
Salam, A. 322
Scalar fields, reduction formula for 146—150
Scattering amplitudes, singularities of 245—253
Scattering, Compton, dynamical calculations of, using dispersion relations 269—278
Scattering, Compton, low-energy theorem for 357—364
Scattering, Compton, meson-nucleon 385
Scattering, Compton, pi-nucleon 189—192
Scattering, Compton, pi-pi 192—197
Scattering, Compton, pion-nucleon 253—263
Scattering, Compton, potential, Fredholm theory of 275
Schroedinger equation 44—45 52
Schroedinger picture 6 91
Schwartz reflection principle 241n. 219 236 242 247
Schwinger, J. 23
Second quantisation, definition of 52
Second quantisation, of Dirao field 44—65
Self-energy, integral equations for 290—293
Self-energy, proper, vertex parts and 285—290
Simple harmonic oscillator 8
Singularities, of general graphs 231—235
Singularities, of scattering amplitudes 245—253
|
|
|
Ðåêëàìà |
|
|
|