Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bjorken J.D., Drell S.D. — Relativistic Quantum Fields
Bjorken J.D., Drell S.D. — Relativistic Quantum Fields



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Relativistic Quantum Fields

Àâòîðû: Bjorken J.D., Drell S.D.

Àííîòàöèÿ:

The propagator approach to a relativistic quantum theory pioneered in 1949 by Feynman has provided a practical, as well as intuitively appealing, formulation of quantum electrodynamics and a fertile approach to a broad class of problems in the theory of elementary particles. The entire renormalization program, basic to the present confidence of theorists in the predictions of quantum electrodynamics, is in fact dependent on a Feynman graph analysis, as is also considerable progress in the proofs of analytic properties required to write dispersion relations. Indeed, one may go so far as to adopt the extreme view that the set of all Feynman graphs is the theory.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1965

Êîëè÷åñòâî ñòðàíèö: 396

Äîáàâëåíà â êàòàëîã: 11.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"internal,"      96—99
''Strangeness'' S      106
Analytic continuation      312—317
Anomalous thresholds      235—242
Antiparticles      40
Antiunitary operator      118n.
Arbitrary graphs, generalization to, and electrical circuit analogy      220—226
Asymptotic behavior of Feynman amplitudes      364—368
Asymptotic condition      132—137
Asymptotic condition, weak      137
Bethe-Salpeter equation      292n.
Bleuler, K      68
Bloch, F.      207
Bogoliubov, N.N.      264 268
Bose fields      98 127—128
Bose-Einstein fields      214
Bose-Einstein statistics      32 44—45 52 56 58—59 124
Brown, L.M.      363
Cauchy relation      252
Causality, and Kramers-Kronig relation      210—213 226
Causality, microscopic      170
Charge conjugation      113—118
Charge parity      114
Charged scalar field      37—40
Co variance, Lorentz      20 71 74
Co variance, relativistic      62—63
Compton scattering, low-energy theorem for      357—364
Conservation laws, symmetries and      17—22
Contraction terms, graphical representation of      185—187
Contraction terms, nonvanishing      184—185
Convergence, criterion for      317—330
Coordinates, momenta and      377—378
Coulomb field      88
Coulomb gauge      86
Creation operator      32
Current distribution, classical, soft photons radiating from      202—207
Degree of divergence      317—330
Density, Hamiltonian      16 18
Density, Lagrangian      13
Differential wave propagation      3
Dirac equation      18 54—55 102 115
Dirac field      86 91—92 111 124
Dirac field, reduction formula for      159—163
Dirac field, second quantization of      44—65
Dirac matrices, spinors and      378—380
Dirac operator      89
Dirac theory      54—56 58 120
Dirac theory, dynamical calculations of pi-pi scattering using      269—278
Dirac theory, for vertex function      242—245
Dirac theory, forward pi-nucleon, axiomatic derivation of      263—269
Dirac theory, spectral representation for      151—159
Dispersion relations      210—283
Divergence, degree of      317—330
Dyson, F.J.      175 181 322
Dyson-Salam renormalization program      322
Dyson-Wick decomposition      187
Dyson-Wick expansion      185
Dyson-Wick reduction      192
Electrical circuit analogy      220—226
Electrodynamic interaction      84—88
Electrodynamics, of spin-one boson      386
Electrodynamics, of spin-zero boson      384
Electrodynamics, spinor      383
electromagnetic field      3
Electron-positron kernel      285—290
Equations, Dirac      18 54—55 102 115
Equations, Euler-Lagrange      5 14 17 19
Equations, Heisenberg      62 98
Equations, integral      see “Integral equations”
Equations, Klein-Gordon      26 28 38 40 102 134
Equations, Klein-Gordon wave      13—15
Equations, Maxwell      69 71 74—75
Equations, Schroedinger      44—45 52
Euler-Lagrange equations      5 14 17 19
Fermi fields      98 127—128
Fermi-Dirac field      64—65 214
Fermi-Dirac statistics      44—46 52 59
Feynman amplitudes, asymptotic behavior of      364—368
Feynman graphs      174—175 187 189 216 231—232
Feynman graphs, rules for      381—386
Feynman propagator      41—42 63—65
Feynman propagator, for transverse photons      78—80
Feynman, R.P.      363
Field commutator      34
Field theories, local      3—5
Field theories, other formulations for      23—24
Fields, Bose      98 127—128
Fields, Bose-Einstein      214
Fields, canonical formalism and quantization procedure for      11—16
Fields, charged scalar      37—40
Fields, Coulomb      88
Fields, Dirac      see “Dirac fields”
Fields, electromagnetic      3
Fields, Fermi      98 127—128
Fields, Fermi-Dirac      64—65 214
Fields, free, theory of      84
Fields, Heisenberg      91
Fields, interacting      84—128
Fields, Klein-Gordon      26—42 46 64 87n. 120 124
Fields, local      3—6
Fields, Maxwell      71 86 124
Fields, microscopic causality and measurability of      34—35
Fields, scalar, reduction formula for      146—150
Fields, wave      3
Formalism, canonical, and quantitation procedure, for fieldi      11—16
Formalism, canonical, and quantitation procedure, for particlei      5—11
Formalism, canonical, general      2—24
Formalism, canonical, quantum field      3
Forward pi-nucleon dispersion relations, axiomatic derivation of      208—200
Fourth-order charge renormaliiatlon, example of      344—357
Fredholm theory of potential scattering      275
Free fields, theory of      84
Gauges, Coulomb      86
Gauges, radiation      73
Gauss's law      71—72 86 88 91
Gell-Mann, M.      192 362
General formalism      2—24
General graph, singularities of, and Landau conditions      231—235
Generators      97
Goldberger, M.L.      192 362
Granularity      4
Graphs, arbitrary, generalization to      220—226
Graphs, Feynman      174—175 187 189 216 231—232
Graphs, Feynman, rules for      381—386
Graphs, general, singularities of      231—235
Graphs, improper      236n.
Graphs, in quantum electrodynamics, rules for      197—202
Graphs, representing contraction terms      185—187
Graphs, skeleton      293—298
Graphs, vertex, analytic properties of, in perturbation theory      216—220
Graphs, vertex, analytical structure of      235—242
Green's functions      53—54 64 220
Green's theorem      27
Gupta, S.N.      68
Hamilton's principle      5 11—12 70
Hamiltonian density      16 18 70
Hamiltonian operator      53
Heine-Borel Theorem      327
Heisenberg equations      62 98
Heisenberg fields      91
Heisenberg picture      7—8 11—12 130
Heisenberg relations      88
High-energy physics, application of Kramers-Kronig relation to      214—216
Hilbert space      12 20
Hypercharge      106
Hyperons      101
Improper      107—108
Improper symmetry      107—108
In-flelds, conitruotion of      132—137
In-flelds, conitruotion of, and out-fields      151—159
In-flelds, conitruotion of, and out-fields, reduotion formula for photons and      163—165
In-itatei, oonitruotion of      132—137
Infrared catastrophe      202—207
Integral equationi, renormalized      309—312
Integral equationi, renormalized, for self-energy and vertex parts      290—293
Integral equationi, renormalized, for tau functions and kernel K      293—298
Interacting fields      84—128
Intermediate renormalization, analytic continuation and      312—317
Internal symmetry      20 96—99
Intrinsic parity      109 112
Invariance, displacement      88—90
Invariant commutator and propagator functions      387—390
Isotopic spin      189—192
Isotopic spin conservation      104
Isotopic spin current      100
JCP theorem      123—127
Jost, R.      357
Kall£n-Lehmann representation      227
Karplus, R.      321
Kernel K, integral equations for      293—298
Kirchhoff's laws      224 229—230 237
Klein-Gordon equation      26 28 38 40 102 134
Klein-Gordon field      26—42 46 64 87n. 120 124
Klein-Gordon theory      47 52 54 56 108
Klein-Gordon wave equation      13—15
Kramers-Kronig relation      243—244 251 362
Kramers-Kronig relation, application to high-energy physics      214—216
Kramers-Kronig relation, causality and      210—213 226
Lagrangian density      13
Lamb shift      36
Landau conditions      231—235
Lehmann, H.      23
Looal fields, description of      3—5
Lorentz      4 18 20 62 69 88—90
Lorentz covariance      20 71 74
Lorentz invariance      4 18 20 62 69 130—131
Lorentz transformation      73—74 89 94 134
Low, F.      362
Low-energy theorem for Compton scattering      357—364
Luttinger, J.M.      357
Mass counterterm      135
Maxwell equations      69 71 74—75
Maxwell field      71 86 124
Maxwell theory      74
Measurability of field and      34—35
Meson-nucleon scattering      385
Microscopic causality      4—5 170
Momenta, coordinates and      377—378
Momentum expansions      56—62 74—77 90—91
n identical particles, quantum mechanics of      44—46
Neumann, M.      321
Noether's theorem      17 22 73 84
Nordsieck, A.      207
Normal order      59
Normal ordering      31 91—93
Normal-ordered factors      126
Nucleon number      99 104
Nucleons, pi mesons and      99—101
Number operator      49
Number representation      231—232 246
Number representation, for fermions      46—54
Of strange particles      101—107
Ohm's law      224—225 248
Oscillator, simple harmonic      8
Out-fields      142—143
Out-fields, in-fields and      151—159
Out-fields, in-fields and, and reduction formula for photons      163—165
Out-states      142—143
Parity      108—113
Parity, charge      114
Parity, intrinsic      109 112
Particle interpretation, quantization and      26—32
Particles      40
Particles, n identical, quantum mechanics of      44—46
Particles, pseudoscalar      109 112
Particles, scalar      109 112
Particles, strange, symmetries of      101—107
Peaceful coexistence      85
Perturbation expansion of      178—181
Perturbation expansion of tau functions and S matrix      178—181
Perturbation theory      3 174—208
Perturbation theory, analytic properties of vertex graphs in      216—220
Phase transformation      97
Photons, in- and out-states and reduction formula for      163—165
Photons, soft, radiated from classical current distribution      202—207
Photons, spectral representation for      166—170
Photons, spin of      77—78
Photons, transverse      78—80
Pi mesons, nucleons and      99—101
Pi-nucleon scattering      189—192
Pi-pi scattering      192—197
Pi-pi scattering, dynamical calculations of, using dispersion relations      269—278
Pi-pi scattering, fourth-order, illustrated      194
Pion electromagnetic structure      278—282
Pion-nucleon scattering, application to forward      253—263
Positronium, decay of      117
Propagation, differential wave      3
Propagator, threshold singularities for      226—231
Pseudoscalar particles      109 112
Quantization procedure, canonical formalism and, for fields      11—16
Quantization procedure, canonical formalism and, for particles      5—11
Quantization, covariance of procedure for      73—74
Quantization, of electromagnetic field      68—81
Quantization, particle interpretation and      26—32
Quantization, second      52
Quantization, second, of Dirac field      44—65
Quantum electrodynamics, rulei for graphs in      107—202
Quantum mechanic I of n identical particles      44—46
Radiation gauge      73
Rayleigh scattering      362
Reduction formula, for Dirac fields, ISO      163
Reduction formula, for photons, in- and out-states and      163—165
Reduction formula, for scalar fields      146—150
Relativistic covariance      62—63
Renormalization      284—376
Renormalization constants, definition of      303—309
Renormalization group      368 376
Renormalization prescription      303—309
Renormalization theory      3
Renormalization, fourth-order charge, example of      844—357
Renormalization, intermediate      312—317
Renormalized theory, proof that it is finite      330—344
S matrix      284
S matrix and      130—172
S matrix, and proof that renormalized theory is finite      330—344
S matrix, definition and general properties of      143—146
S matrix, perturbation expansion of      178—181
S matrix, unitarity of      274
S matrix, vacuum expectation values and      130—172
Salam, A.      322
Scalar fields, reduction formula for      146—150
Scattering amplitudes, singularities of      245—253
Scattering, Compton, dynamical calculations of, using dispersion relations      269—278
Scattering, Compton, low-energy theorem for      357—364
Scattering, Compton, meson-nucleon      385
Scattering, Compton, pi-nucleon      189—192
Scattering, Compton, pi-pi      192—197
Scattering, Compton, pion-nucleon      253—263
Scattering, Compton, potential, Fredholm theory of      275
Schroedinger equation      44—45 52
Schroedinger picture      6 91
Schwartz reflection principle      241n. 219 236 242 247
Schwinger, J.      23
Second quantisation, definition of      52
Second quantisation, of Dirao field      44—65
Self-energy, integral equations for      290—293
Self-energy, proper, vertex parts and      285—290
Simple harmonic oscillator      8
Singularities, of general graphs      231—235
Singularities, of scattering amplitudes      245—253
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå