|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
De Finetti B. — Theory of Probability. A critical introductory treatment(vol. 2) |
|
|
Предметный указатель |
Acceptance (or rejection) of, a hypothesis 200 252
Additivity, finite, countable, perfect 259 343 348—361
Adhockeries 200 372
Anderson, Sparre 140
Andre, Desire 22 78 114 115 156
Anscombe, F. J. 368
Armitage, P. 368
Asymptotically certain 131
Autocorrelation 169
Bachelier 155
Baire 350
Ballot problems 123—141
Banach, St. 350
Barnard, G. A. 368
Bartlett, M. S. 368
Bayes — Laplace process 32 149 184 219—223
Bayes’s theorem and induction 195 199
Bernoulli process 208
Bernoulli process, law of large numbers 38
Bernoulli, Daniel 253
Bessel process 105 106
Birkhoff, G. 303 322
Bittering’s apparatus 18 19 45
Blackwell, D 343
Bodiou, G 263 269 305 309
Bohr, N 307 319
Boltzmann (see “Maxwell — Boltzmann statistics”)
Boolean algebra and logic 269 305
Borel — Cantelli lemma 38
Borel, E. 263 362 368
Born, M. 41
Bose — Einstein statistics 181 184
Bourbaki 6 263
Brownian motion 51
Calderoni, M. 41 201
Cantelli law 38
Cantor distribution 263
Caratheodory 263
Carnap, R. 197 341
Cauchy convergence 215 227
Cauchy convergence, distribution 58 92 194
Central limit theorem 44—70
Cesaro 35
Characteristic functions for several vari, ables 174
Chisini, O. 244
Chung 140
Conjugate prior distributions 238 242
Cournot's principle 34 39
Cox, D. R 368
Cramer’s theorem 67 68 171 350
de Finetti, B 43 197 218 245 343 354 363 366
de Grazia, A 197
de Laplace, P. S. 323 325
De Moivre 111
De Moivre, approximation to Stirling’s formula 50
Decision theory 225 251—255
Decision theory, minimax decision 254 255
Dempster, A. P. 368
Destouches 340
Determinism 324 325
Dirac 321 (see also Fermi-Dirac ‘statistics’)
Distributions, beta 188 191 218—219
Distributions, Cantor 263 373 374
Distributions, continuous, arc sine 138 141—143
Distributions—ctd., Cauchy 58 92 194
Distributions—ctd., chi-square 190
Distributions—ctd., compound Poisson 74 85— 88
Distributions—ctd., discrete, Bernoulli (binomial) 22—24
Distributions—ctd., divisibility of 72 88 91 98 99
Distributions—ctd., gamma 105 189 190 238 240
Distributions—ctd., geometric 29
Distributions—ctd., hypergeometric 24—28
Distributions—ctd., mixtures 213—215
Distributions—ctd., multinomial 182
Distributions—ctd., multivariate normal 176—180
Distributions—ctd., negative-binomial 30
Distributions—ctd., normal 36 44—64 222 234 240 250
Distributions—ctd., Pascal 28
Distributions—ctd., semi-normal 119
Distributions—ctd., stable 98 107
Distributions—ctd., Student 194 240
Distributions—ctd., uniform 31
Einstein ‘statistics, Ellipsoidsofcovarianceandconcentration 178
Einstein, A. 41 322
Ellsberg, D. 368
Enriques, F. 218
Ergodic theorem and principle 149 151
Exchangeability 211 212 215 224
Feller, W 2 68 70 89 91 105 114 140 142
Fermi Dirac ‘statistics 181 184
Fibonacci numbers 7 8
Fibonacci numbers, and Emanuelli, F 198
Fibonacci numbers, and Minisola, F. 23
Fibonacci numbers, and Savage, L. J. 197 204 245 368
Finney, D. J. 368
Fisher, R, A. 248 249 252
Fourier transform 172
Frechet, R. M. 263
frequency 33—42 204—208
Frey 245
Galileo 41 197 277
Gallon, F 62 63
Gambler’s ruin 22 110—123
Gennaro, A 363
Goldbach’s conjecture 291
Gosset, W. S. (see “Student”)
Green's function 123
Haussdorff, F. 350
Heisenberg's uncertainty principle 41 307 319
Hermite inner product 314
Hertz 322
Hilbert space 273 313 314
| Hintikka 245
Holtsmark 104
Hume, D. 201
Huyghens 167
Independence and dependence 208 215 259
Induction 195 202
Information matrix (Fisher) 250
Information matrix (Fisher), value of (Schlaifer) 254
James, W. 201
Jeffreys, H 39 197 331 341
Jordan — Peano measure 355 371
Kant, E. 201
Kelvin’s method of images 115 121 122 159
Kennard 319
Kerridge, D. 368
Keynes, J. M. 362 368
Khintchin, A. 68 69 91
Khintchin, law of the iterated logarithm 38 160
Khintchin, process 170
Kingman, J. F. C. 353
Kolmogorov, A. N. 38 125 159 160 263 269 334 343 344 358
Koopman, B. O. 39 303 368
Kraft, C, H 366
Kyburg, H. E, and Smokier, H, E. 362
Lakatos 1 197
Laws of large numbers 33 43
Lebesgue measure and integral 259 263 337 350
Levy, P. 65 68 91 97 104 140 160 163 350
Liapounov 68
Likelihood principle 240—243
Lindeberg 68
Lindley, D. V. 238 240 244 248 251 253 368
Loeve, M. 171
Logic 198—202
Logic, three-valued 266 304 306—313 321 325
Loinger, A. 192
Lombardo — Radice, L. 304
Markov chains 150 165—168
Markov chains, processes 165—172
Maxwell 57 62 190 322
Maxwell — Boltzmann ‘statistics 181 184
Mixtures of distributions 213—215
Morant, G. M. 197
Morgenstern 253
Neyman, J. 198 242 248
Objectivism 201 202 264 265
Papini 41
Pascal’s triangle 20
Pauli’s exclusion principle 184
Peano 201 298 319
Pearson, E. S. 62 248
Pearson, K. 47 197
Peirce, C. S. 201
Persico, E. 314
Persistent states 125
Petrowski 159 160
Pike, M 368
Planck’s constant 319
Poincare 63 249
Poisson process, simple, compound, generalized 73—76 80—92
Polya 51 366
Polya, urn scheme (contagion probabilities) 32 149 183 214 220 221
Popper, K. 197
POST 308
Pragmatism 41 201
Pratt, J. 366
RaifTa, H 238
Ramsey, F, P. 253
Random, ‘at random 9 185 189
Recurrent sequence. 124
Reflection principle 22 78 114 115 156
Reichenbach, H 303 306—309 322—324 328
Renyi, A. 352
Riemann 371
Riesz 263
Robertson 319
Sansone, G. 346
Sarason, H. M. 327
Savage, L. J. 40 197 204 223 245 253 365 368
Schlaifer, R 238
Schwartz, L. 263
Sciama, D. W. 151
Seidenberg, A. 366
Shanks, D 291
Smirnov 125
Smith, C. A. B. 368
Smokier, H. E. (see “Kyburg H.
Stationary process 168—172
Stiefel’s identity 20 49
Stieltjes 74
Stirling’s formula 27 49 50
STUDENT 194 240
Sufficient statistics 240—243
Tchebychev’s inequality 33 35 38 45 53 77
Transient states 125
Ulam, St. 269 350
Utility 253 254
Vailati, G. 41 201
Veihinger 265
Velikovsky 196 197
Vetter 245
Vitali, G 346 350
Volterra 60 167
von Kutschera 245
von Mises, R. 60 342
von Neumann, J. 192 253 269 303 304 319—325
Wald, A. 253
Watson, J. 197
Wegener 196
Weisskopf, V. F. 151 196
Wiener — Levy process 92—98 153—164
Wrench, J. W 291
Zermelo’s postulate 337
|
|
|
Реклама |
|
|
|