| 
			         | 
		         
		       
		        
			          | 
		          
		        
					| Авторизация | 
		         
		        
					| 
 | 
		          
		        
			          | 
		          
		        
			        | Поиск по указателям | 
		         
		        
			        
					 
				        
					
			         | 
		          
		        
			          | 
		          
			
			         | 
		         
       		 
			          | 
		          
                
                    | 
                        
                     | 
                  
		
			          | 
		          
		        
			          | 
		          
		
             
	     | 
	    
	      | 
	    
	    
            
		 |  
                
                    | De Finetti B. — Theory of Probability. A critical introductory treatment(vol. 2) | 
                  
                
                    | 
                        
                     | 
                 
                                                                
			          | 
	          
                
                    | Предметный указатель | 
                  
                
                    
                        Acceptance (or rejection) of, a hypothesis      200 252  
Additivity, finite, countable, perfect      259 343 348—361  
Adhockeries      200 372  
Anderson, Sparre      140  
Andre, Desire      22 78 114 115 156  
Anscombe, F. J.      368  
Armitage, P.      368  
Asymptotically certain      131  
Autocorrelation      169  
Bachelier      155  
Baire      350  
Ballot problems      123—141  
Banach, St.      350  
Barnard, G. A.      368  
Bartlett, M. S.      368  
Bayes — Laplace process      32 149 184 219—223  
Bayes’s theorem and induction      195 199  
Bernoulli process      208  
Bernoulli process, law of large numbers      38  
Bernoulli, Daniel      253  
Bessel process      105 106  
Birkhoff, G.      303 322  
Bittering’s apparatus      18 19 45  
Blackwell, D      343  
Bodiou, G      263 269 305 309  
Bohr, N      307 319  
Boltzmann      (see “Maxwell — Boltzmann statistics”)  
Boolean algebra and logic      269 305  
Borel — Cantelli lemma      38  
Borel, E.      263 362 368  
Born, M.      41  
Bose — Einstein statistics      181 184  
Bourbaki      6 263  
Brownian motion      51  
Calderoni, M.      41 201  
Cantelli law      38  
Cantor distribution      263  
Caratheodory      263  
Carnap, R.      197 341  
Cauchy convergence      215 227  
Cauchy convergence, distribution      58 92 194  
Central limit theorem      44—70  
Cesaro      35  
Characteristic functions for several vari, ables      174  
Chisini, O.      244  
Chung      140  
Conjugate prior distributions      238 242  
Cournot's principle      34 39  
Cox, D. R      368  
Cramer’s theorem      67 68 171 350  
de Finetti, B      43 197 218 245 343 354 363 366  
de Grazia, A      197  
de Laplace, P. S.      323 325  
De Moivre      111  
De Moivre, approximation to Stirling’s formula      50  
Decision theory      225 251—255  
Decision theory, minimax decision      254 255  
Dempster, A. P.      368  
Destouches      340  
Determinism      324 325  
Dirac      321 (see also Fermi-Dirac ‘statistics’)  
Distributions, beta      188 191 218—219  
Distributions, Cantor      263 373 374  
Distributions, continuous, arc sine      138 141—143  
Distributions—ctd., Cauchy      58 92 194  
Distributions—ctd., chi-square      190  
Distributions—ctd., compound Poisson      74 85— 88  
Distributions—ctd., discrete, Bernoulli (binomial)      22—24  
Distributions—ctd., divisibility of      72 88 91 98 99  
Distributions—ctd., gamma      105 189 190 238 240  
Distributions—ctd., geometric      29  
Distributions—ctd., hypergeometric      24—28  
Distributions—ctd., mixtures      213—215  
Distributions—ctd., multinomial      182  
Distributions—ctd., multivariate normal      176—180  
Distributions—ctd., negative-binomial      30  
Distributions—ctd., normal      36 44—64 222 234 240 250  
Distributions—ctd., Pascal      28  
Distributions—ctd., semi-normal      119  
Distributions—ctd., stable      98 107  
Distributions—ctd., Student      194 240  
Distributions—ctd., uniform      31  
Einstein ‘statistics, Ellipsoidsofcovarianceandconcentration      178  
Einstein, A.      41 322  
Ellsberg, D.      368  
Enriques, F.      218  
Ergodic theorem and principle      149 151  
Exchangeability      211 212 215 224  
Feller, W      2 68 70 89 91 105 114 140 142  
Fermi Dirac ‘statistics      181 184  
Fibonacci numbers      7 8  
Fibonacci numbers, and Emanuelli, F      198  
Fibonacci numbers, and Minisola, F.      23  
Fibonacci numbers, and Savage, L. J.      197 204 245 368  
Finney, D. J.      368  
Fisher, R, A.      248 249 252  
Fourier transform      172  
Frechet, R. M.      263  
frequency      33—42 204—208  
Frey      245  
Galileo      41 197 277  
Gallon, F      62 63  
Gambler’s ruin      22 110—123  
Gennaro, A      363  
Goldbach’s conjecture      291  
Gosset, W. S.      (see “Student”)  
Green's function      123  
Haussdorff, F.      350  
Heisenberg's uncertainty principle      41 307 319  
Hermite inner product      314  
Hertz      322  
Hilbert space      273 313 314  
 | Hintikka      245  
Holtsmark      104  
Hume, D.      201  
Huyghens      167  
Independence and dependence      208 215 259  
Induction      195 202  
Information matrix (Fisher)      250  
Information matrix (Fisher), value of (Schlaifer)      254  
James, W.      201  
Jeffreys, H      39 197 331 341  
Jordan — Peano measure      355 371  
Kant, E.      201  
Kelvin’s method of images      115 121 122 159  
Kennard      319  
Kerridge, D.      368  
Keynes, J. M.      362 368  
Khintchin, A.      68 69 91  
Khintchin, law of the iterated logarithm      38 160  
Khintchin, process      170  
Kingman, J. F. C.      353  
Kolmogorov, A. N.      38 125 159 160 263 269 334 343 344 358  
Koopman, B. O.      39 303 368  
Kraft, C, H      366  
Kyburg, H. E, and Smokier, H, E.      362  
Lakatos      1 197  
Laws of large numbers      33 43  
Lebesgue measure and integral      259 263 337 350  
Levy, P.      65 68 91 97 104 140 160 163 350  
Liapounov      68  
Likelihood principle      240—243  
Lindeberg      68  
Lindley, D. V.      238 240 244 248 251 253 368  
Loeve, M.      171  
Logic      198—202  
Logic, three-valued      266 304 306—313 321 325  
Loinger, A.      192  
Lombardo — Radice, L.      304  
Markov chains      150 165—168  
Markov chains, processes      165—172  
Maxwell      57 62 190 322  
Maxwell — Boltzmann ‘statistics      181 184  
Mixtures of distributions      213—215  
Morant, G. M.      197  
Morgenstern      253  
Neyman, J.      198 242 248  
Objectivism      201 202 264 265  
Papini      41  
Pascal’s triangle      20  
Pauli’s exclusion principle      184  
Peano      201 298 319  
Pearson, E. S.      62 248  
Pearson, K.      47 197  
Peirce, C. S.      201  
Persico, E.      314  
Persistent states      125  
Petrowski      159 160  
Pike, M      368  
Planck’s constant      319  
Poincare      63 249  
Poisson process, simple, compound, generalized      73—76 80—92  
Polya      51 366  
Polya, urn scheme (contagion probabilities)      32 149 183 214 220 221  
Popper, K.      197  
POST      308  
Pragmatism      41 201  
Pratt, J.      366  
RaifTa, H      238  
Ramsey, F, P.      253  
Random, ‘at random      9 185 189  
Recurrent sequence.      124  
Reflection principle      22 78 114 115 156  
Reichenbach, H      303 306—309 322—324 328  
Renyi, A.      352  
Riemann      371  
Riesz      263  
Robertson      319  
Sansone, G.      346  
Sarason, H. M.      327  
Savage, L. J.      40 197 204 223 245 253 365 368  
Schlaifer, R      238  
Schwartz, L.      263  
Sciama, D. W.      151  
Seidenberg, A.      366  
Shanks, D      291  
Smirnov      125  
Smith, C. A. B.      368  
Smokier, H. E.      (see “Kyburg H.  
Stationary process      168—172  
Stiefel’s identity      20 49  
Stieltjes      74  
Stirling’s formula      27 49 50  
STUDENT      194 240  
Sufficient statistics      240—243  
Tchebychev’s inequality      33 35 38 45 53 77  
Transient states      125  
Ulam, St.      269 350  
Utility      253 254  
Vailati, G.      41 201  
Veihinger      265  
Velikovsky      196 197  
Vetter      245  
Vitali, G      346 350  
Volterra      60 167  
von Kutschera      245  
von Mises, R.      60 342  
von Neumann, J.      192 253 269 303 304 319—325  
Wald, A.      253  
Watson, J.      197  
Wegener      196  
Weisskopf, V. F.      151 196  
Wiener — Levy process      92—98 153—164  
Wrench, J. W      291  
Zermelo’s postulate      337  
 |   
                            
                     | 
                  
			  | 
		          
			| Реклама |  
			  | 
		          
			 |  
                             
         |